NUMBERS
Number Systems

- Generally:
 \[X_b = a_{n-1} \times b^{n-1} + a_{n-2} \times b^{n-2} + \ldots + a_0 \times b^0 \]

- Decimal:
 \[2345_{10} = 2 \times 10^3 + 3 \times 10^2 + 4 \times 10^1 + 5 \times 10^0 \]

- Binary:
 \[1011_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 \]

- Digital systems consist of elements which generally have only two possible states. Therefore the binary number system is a natural choice of number system.
Bits and Bytes

• In general, number systems start at 0 not 1

• 1 Bit means 1 Binary Digit (represented by a 1 or 0)

• 8 Bits is referred to as 1 Byte
 • (00000000 - 11111111 = 0 – 255, The range is $2^8 - 1$)

• 16 Bits is called 1 Word

• 4 Bits is 1 Nibble
Hexadecimal

• Hexadecimal is the number system using base 16
• Each digit can take 16 possible values (0 – 9, A - F)
• Each Hex digit is equivalent to 4 Bits in Binary

• \(8A \text{ Hex} = 10001010 \text{ binary} = 138 \text{ decimal} \)

• Why? 4 binary digits can have \(2^4 = 16 \) possible values
• Which is the same as a single Hex digit

• Therefore, Hex is a nice compact way of representing binary numbers (and is therefore often used when programming)
Signed Numbers

• In Binary number systems, if signed arithmetic is necessary, the most significant bit is used to represent the sign.

 • 00110010 is positive
 • 10110010 is negative

• For 1 Byte, Number Range is therefore – 2^7 to $2^7-1 = -128$ to +127 (Not 2^8)
Two’s Complement Arithmetic

- Consider a 3 bit code (a 3 bit computer?)
- +3: 011 binary
- Complement: 100
- Comp + 1: 101 (This is the Two’s complement for -3)
- Addition: (+3) 011
 + (-3) 101
 = 0 1000
 Lost!

- The 68HC11 has special instructions for creating 2’s complement numbers.
Real Numbers

• How do you represent fractional numbers using binary?

• Eg 1 0 1 1 . 1 1 0 1
 \[2^3 2^2 2^1 2^0 . 2^{-1} 2^{-2} 2^{-3} 2^{-4}\]
 = 11.8125

• In the above notation, the range is very small (around 2^4)

• Normally, scientific notation is used: p x b^q
 – P = Mantissa or Significand
 – B = Base
 – Q = Exponent
Real Numbers (2)

• Example: 1 Byte Mantissa, 1 Byte Exponent (base 10)

\[
\begin{align*}
01010010 & \quad 00000010 \\
0.640625 & \quad 2 \\
= 0.640625 \times 10^2 & \\
= 64.0625
\end{align*}
\]

• A much larger range is possible using this method

• Many representations are possible the 68HC11 uses its own format

• The most common format is defined in IEEE 754
Representing Characters - ASCII

- From: http://www.mindspring.com/~jc1/serial/Resources/ASCII.html

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI	
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US	
2	SPC	!	"	#	$	%	&	'	()	*	+	,	-	.	/	
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?	
4	@	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	
5	P	Q	R	S	T	U	V	W	X	Y	Z	[\]	^	_	
6	`	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	
7	p	q	r	s	t	u	v	w	x	y	z	{			}	~	DEL
Logical Operations

- **AND**

 \[
 \begin{array}{c}
 01100111 \\
 10100101 \\
 \hline
 00100101 \\
 \end{array}
 \]

 = 00100101

- **OR**

 \[
 \begin{array}{c}
 01100111 \\
 10100101 \\
 \hline
 11100111 \\
 \end{array}
 \]

 = 11100111

- **XOR**

 \[
 \begin{array}{c}
 01100111 \\
 10100101 \\
 \hline
 11000010 \\
 \end{array}
 \]

 = 11000010

- These are the only three logical operations supported by the HC11
Bit Masks

• If I want to know the value of the low nibble of a byte:

\[
\begin{align*}
11010011 & \quad \text{AND} \\
00001111 & \quad \text{=} \\
00000111 & \quad \text{=}
\end{align*}
\]

• If I want to set one bit:

\[
\begin{align*}
11010011 & \quad \text{OR} \\
00000100 & \quad \text{=} \\
11010111 & \quad \text{=}
\end{align*}
\]

Friday, 27 January 12
Numbers