68HC11 Review
68HC11 Component Systems

- CPU
- ALU
- Memory Map
- Operating Modes
- Interrupt System
- Digital I/O
- Analog/Digital Converter
- Synchronous Serial I/O
- Asynchronous Serial I/O
- Timer Subsystem
68HC11 CPU

- 8-Bit Core

- Most Opcodes (with operand) are longer than 8-bit.

- Most Opcodes have multiple addressing modes

- Opcode specifies operation as-well as mode

- C.C.R. acts as base for conditional branches
68HC11 ALU

• Native 8-bit (Add, Subtract, Multiply)

• Microcoded 16-Bit divides

• Working in more than 8-bits = slow
• Divides = slow
• No native floating point support = EXTREMELY slow

• *C compiler can hide complexity, but doesn’t make things any faster.*
68HC11 Memory Map

• 8-bit data bus
 – Almost all memory locations are 8-bits wide

• 16-bit address bus
 – Loose 0x40 bytes to registers
 – Loose some space to stack (unspecified...)
 – Loose some space to programme

• Extremely limited internal resources
 – 256 bytes RAM
 – 8K ROM

• Expanded multiplexed mode enables extension

• Some integrated protections (64 E-cycle lockouts)
68HC11 Operating Modes

• Single-Chip
 – Potentially more reliable
 – Much less capable

• Expanded Multiplexed
 – More components to fail = less reliable
 • External Address Demultiplexer – 74HC573N
 • Port Replacement Unit (PRU) – 68HC24
 – Much more capable

• Bootstrap & Special Test Modes
 – Special purpose use ONLY
68HC11 Interrupt System

- Interrupts triggered by logical AND:
 - Local Flag & Local Mask & Global Mask
- When an interrupt is triggered, ISR address fetched from the IVT
 - Many interrupt vectors, some are shared.
- An ISR Should:
 - Clear it’s own flag bit
 - Handle the interrupt
 - BE SHORT
68HC11 Digital I/O

- 5 Ports – 38 Bits
- Mixture of I/O, I and O
- PORTC and PORTB used in expanded multiplexed
 – 68HC24 PRU replaces them exactly as they were
- I/O ports MUST be configured appropriately
68HC11 ADC

• 8-Bit ADC – Sec. 7
 – 0x00 = \(V_{RL} \) (=0V)
 – 0xFF = \(V_{RH} \) (=5V)

• 8 input channels, 4 conversions/batch
 – Single channel – 4 sequential conversions
 – Multi-channel – 4 ‘simultaneous’ conversions

• Scan mode sacrifices power for availability
 – Can cause issues at v. high frequencies

• *Conversions NOT instantaneous* (Fig 7-1)
68HC11 Asynchronous Serial

• SCI – Sec. 5
• Asynchronous serial:
 – Match clock frequencies but not clocks
 – SCI handles clocking as per configuration
 – Baud = bits per second (don’t forget start/stop bits)
• RS232 specifies ±15V typical
 – 68HC11 is a TTL device
 – MAX232 level shifter
• *Handshaking/Error checking not done in H/W*
68HC11 Synchronous Serial

• SPI – Sec. 6

• Higher speed than SCI
• More complex to manage
• Independent of SCI

• Used for debugger on EVBPlus2
• Otherwise only of academic interest
68HC11 Timers

• 16-bit master timer TCNT
 – Prescaler bits in TMSK1
• Output Compares
 – Timer Matches → Output Actions
• Input Captures
 – Input Actions → Time Recorded

• Requires interrupt to be effective
 – Unless you’re incredibly tricky...
68HC11 Summary

- You should now be able to:
 - Write code to appropriately use ALL subsystems (except SPI)
 - Understand external hardware requirements for ALL subsystems
 - Understand the operation and capabilities of ALL subsystems
 - Interpret datasheets for ICs and µPs beyond the 68CH11

IF IN DOUBT, ASK!!!
68HC11 Summary

- Some other technical skills:
 - Make Design Decisions
 - Understand requirements for interfacing (HW & SW)
 - Back-of-the-envelope calculation
 - Storage Requirements
 - Timer Resolution & Limits
 - A/D Sample Rates
 - Serial Data Rates
 - Internal design of modules on the HW to SW boundary (Driver layer)