Mtrx 4700 : Experimental Robotics

Obstacle Avoidance & Path Planning

Dr. Robert Fitch
Dr. Stefan B. Williams

Course Outline

<table>
<thead>
<tr>
<th>Wk.</th>
<th>Date</th>
<th>Content</th>
<th>Labs</th>
<th>Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5-Mar</td>
<td>Introduction, history & philosophy of robotics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12-Mar</td>
<td>Robot kinematics & dynamics</td>
<td>Kinematics/Dynamics Lab</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>19-Mar</td>
<td>Sensors, measurements and perception</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>26-Mar</td>
<td>Robot vision and vision processing</td>
<td>Processing laser data</td>
<td>Kin. Lab</td>
</tr>
<tr>
<td>5</td>
<td>2-Apr</td>
<td>Localization and navigation</td>
<td>Processing vision data</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9-Apr</td>
<td>Estimation and Data Fusion</td>
<td>No Tute (Good Friday)</td>
<td>Sensing Lab</td>
</tr>
<tr>
<td>7</td>
<td>16-Apr</td>
<td>BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>23-Apr</td>
<td>Extra tutorial session</td>
<td>Navigation lab</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>30-Apr</td>
<td>Obstacle avoidance and path planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7-May</td>
<td>Robotic architectures, multiple robot systems</td>
<td>Major project</td>
<td>Nav Lab</td>
</tr>
<tr>
<td>11</td>
<td>14-May</td>
<td>Robot learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>21-May</td>
<td>Case Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>28-May</td>
<td>Case Study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4-Jun</td>
<td>Major Project demonstration</td>
<td></td>
<td>Major Project</td>
</tr>
<tr>
<td></td>
<td>Spare</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Today's Goals

- To familiarize you with the basic techniques of planning.
- To get you excited!
- To let you experience the difficulties of planning in the real world.

DARPA Grand Challenge
Stanford Planning Course (Undergraduate)

1. Overview
2. Path planning for point robot
3. Configuration space of a robot
4. Collision detection 1/2: Hierarchical methods
5. Collision detection 2/2: Feature-tracking methods
6. Probabilistic roadmaps 1/3: Basic techniques
7. Probabilistic roadmaps 2/3: Sampling strategies
8. Probabilistic roadmaps 3/3: Sampling strategies
9. Criticality-based motion planning: Assembly planning and target finding
10. Coordination of multiple robots
11. Kinodynamic planning
12. Humanoid and legged robots
13. Modular reconfigurable robots
14. Mapping and inspecting environments
15. Navigation in virtual environments
16. Target tracking and virtual camera
17. Motion of crowds and flocks
18. Motion of bio-molecules
19. Radiosurgical planning

CMU Planning course (Post-graduate)

1. Planning, Execution, and Learning
2. Linear Planning and Non-Linear planning
3. State-Space Planning
4. Partial Order Planning
5. Comparison: State-Space and Plan-Space Planning
6. Hierarchical Task Net Planning
7. GraphPlan, StarPlan
8. Heuristic Planning
9. BDD-based Planning
10. Conditional Planning
11. Markov Decision Processes
12. Reinforcement Learning
13. Decision-Theoretic Planning
14. Transformational Planning
15. POMDP
16. Explanation-based Learning in Planning
17. Analogical reasoning in Planning
18. Learning Domain-Specific Planners
19. Robot Path Planning
20. Execution
21. Execution and Learning
22. Multi-robot Systems
Path Planning and Obstacle Avoidance

- **Path Planning**
 - Given a map and a goal location, path planning involves identifying a trajectory that will cause the robot to reach the goal location when executed.

- **Obstacle Avoidance (Reacting)**
 - Given real-time sensor readings, obstacle avoidance means modulating the trajectory of the robot in order to avoid collisions.

- **Integrated Planning & Execution**
 - The planner incorporates every new piece of information in real time, instantly producing a new plan that in fact reacts to the new information appropriately.

Goals of Planning

- **Task-level programming**
 - go to A without colliding with obstacles
 - assemble product P
 - build map of environment E
 - find object O

- **Compute motion strategies, e.g.**
 - geometric paths (*path planning*)
 - time-parameterized trajectories (*motion planning*)
 - sequence of sensor-based motion commands
Rigid Objects

→ Ladder problem

Piano-mover problem ←

Articulated Objects
Algorithms for Mapping and Exploration

- Building Maps
 - Unknown Environment
 - Sensing and navigation
 - Locating areas of interest
- Applications
 - Security
 - Tour Guide
 - Domestic

CMU Urban Search and Rescue
Nonholonomic Robots

CMU Navlab

Problem 2: 8_2-path 1

DARPA Urban Challenge
Deformable Objects

[Kavraki] (Rice)

Origami Mathematics

Show movie http://www.cs.dartmouth.edu/~robotics/hat.mov
Humanoid: Footstep planning

James Kuffner et al.

Digital Actors

- A Bug’s Life (Pixar/Disney)
- Toy Story (Pixar/Disney)
- Antz (Dreamworks)
- Tomb Raider 3 (Eidos Interactive)
- The Legend of Zelda (Nintendo)
- Final Fantasy VIII (SquareOne)
Free-Climbing Robot

JPL’s LEMUR robot

http://ai.stanford.edu/~latombe/projects/fulltry_mpeg.mpg
Modular Reconfigurable Robots

Casal and Yim, 1999

Radiosurgical Planning

Cross-firing at a tumor while sparing healthy critical tissue
Motion of Bio-Molecules

- Protein folding
- Ligand binding

Bronchoscopy

[S. Napel, 3D Medical Imaging Lab. Stanford]
Fundamental Question

Are two given points connected by a path?

E.g.:
- Collision with obstacle
- Lack of visibility of an object
- Lack of stability
Basic Problem

1. **Statement:**
 Compute a **collision-free path** for a rigid or articulated object (the robot) among static obstacles

2. **Inputs:**
 1. Geometry of robot and obstacles
 2. Kinematics of robot (degrees of freedom)
 3. Initial and goal robot **configurations** (placements)

3. **Output:**
 - **Continuous** sequence of collision-free robot configurations connecting the initial and goal configurations
 - Report failure if no such path exists.

Some extensions of basic problem

- Moving obstacles
- Multiple robots
- Movable objects
- Assembly planning
- Goal is to acquire information by sensing
 - Model building
 - Object finding/tracking
 - Inspection
- Nonholonomic constraints
- Dynamic constraints
- Stability constraints
- Optimal planning
- Uncertainty in model, control and sensing
- Exploiting task mechanics (sensorless motions, under-actuated systems)
- Physical models and deformable objects
- Integration of planning and control
- Integration with higher-level planning
Topics we will cover…

- Framework for Planning
- Configuration Space
- Key algorithms for basic planning
- Some planning applications

Real world is absurdly complex

- Real world is absurdly complex
 - State space must be abstracted for problem solving

- (Abstract) state = set of real states

- (Abstract) action = complex combination of real actions

- (Abstract) solution = set of real paths that are solutions in the real world
Framework of Planning

Continuous representation

↓

Discretization

↓

Graph searching

(blind, best-first, A*)

Map a robot to a point: **Configuration Space**

- Is the set of legal configurations of the robot. It also defines the topology of continuous motions.

- For a rigid-object robots (not joints) there exists a transformation to the robot and obstacles that turn the robot into a single point.

- The C-Space Transform.
Configuration Space Example

- 2-D world, 2 DOFs

Where can I move this robot in the vicinity of this obstacle?

...is equivalent to...

Where can I move this point in the vicinity of this expanded obstacle?

Assuming you’re not allowed to rotate
• It is important for motion (path) planning.

• We have turned the problem from "Twist and turn this 2-D polygon past this other 2-D polygon" into "Find a path for this point in 3-D space past this weird 3-D obstacle".

• Now we can plan paths for points instead of polyhedrons/polygons.
Algorithms for motion planning

Continuous representation

Discretization

Graph searching
(blind, best-first, A*)

Road Map: Visibility Graph, Voronoi Diagrams
- Represent the connectivity of the free space by a network of 1-D curves

Cell Decomposition
- Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

Potential Methods
- Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent
Now we have a CSPACE with polygonal obstacles.
If there were no blocks, shortest path would be a straight line. Else it must be a sequence of straight lines “shaving” corners of obstacles.

Visibility Graph Algorithms

1. Find all non-blocked lines between polygon vertices, start and goal
2. Search the graph of these lines for the shortest paths
Visibility Graph Algorithms

1. Install all obstacles vertices in VG, plus the start and goal positions
2. For every pair of nodes u, v in VG
3. If segment(u,v) is an obstacle edge then
4. insert (u,v) into VG
5. else
6. for every obstacle edge e
7. if segment(u,v) intersects e
8. then goto 2
9. insert (u,v) into VG
10. Search VG using A*

Reduced Visibility Graph

can’t be shortest path

tangent segments

→ Eliminate concave obstacle vertices
Computing the shortest collision-free path in a polyhedral space is NP-hard.

Visibility Graph Algorithms

- Visibility Graph method finds the **shortest** path.
- But it does so by skirting along and close to obstacles.
- Any errors in control, or model of obstacle locations, bad thing happens.
Voronoi Diagrams

- Idea: We may not care about optimality. Instead, we may want to get a non-stupid path that steers as far from the obstacles as it can.

Compute the Voronoi Diagram

http://www.cs.cornell.edu/Info/People/chew/Delaunay.html
Voronoi Diagram Methods for C-Space Motion Planning

1. Compute the Voronoi Diagram of C-Space.

2. Compute the shortest straightline path from start to any point on Voronoi Diagram.

3. Compute the shortest straight line path from goal to any point on Voronoi Diagram.

4. Compute shortest path from start to goal along Voronoi Diagram.

Voronoi Diagrams

- It is very complex above 2-D.

- This “use Voronoi to keep clear of obstacles” is just a heuristic. And can be made to look stupid.
Algorithms for motion planning

- **Road Map: Visibility Graph, Voronoi Diagrams**
 - Represent the connectivity of the free space by a network of 1-D curves
- **Cell Decomposition**
 - Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells
- **Potential Methods**
 - Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent

Cell Decomposition Methods

- Idea: Break Free Space into Convex Exact Polygons.

1. Lay Down a grid
2. Avoid any Cell which intersects an obstacle
3. Plan shortest path through other cells
4. If no plan exists, double the resolution and try again!
Variable Resolution “Approximate & Decompose”

- Not so many complaints. This is actually used in practical systems.

- But
 1. Not exact (no notion of "best" path)
 2. Not complete: doesn’t know if problem actually unsolvable?
 3. Still hopeless above a small number of dimensions?

Algorithms for motion planning

- **Road Map: Visibility Graph, Voronoi Diagrams**
 - Represent the connectivity of the free space by a network of 1-D curves

- **Cell Decomposition**
 - Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells

- **Potential Methods**
 - Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent
Approach initially proposed for real-time collision avoidance [Khatib, 86]. Hundreds of papers published on it.

\[
F_{Goal} = -k_p (x - x_{Goal})
\]

\[
F_{Obstacle} = \begin{cases}
\frac{1}{\rho - \rho_0} \frac{\partial \rho}{\partial x} \frac{1}{\rho} & \text{if } \rho \leq \rho_0 \\
0 & \text{if } \rho > \rho_0
\end{cases}
\]
Local Minimum Issue

- Perform best-first search (possibility of combining with approximate cell decomposition)
- Alternate descents and random walks
- Use local-minimum-free potential (navigation function)

Potential Field Algorithm

1. Place regular grid G over space
2. Search G using best-first search algorithm with potential as heuristic function
Simple Navigation Function

Obstacle Avoidance & Path Planning

Mtrx4700: Experimental Robotics
Simple Navigation Function

```
+---+---+---+---+
| 2 | 1 | 2 | 3 |
+---+---+---+---+
| 1 | 0 | 1 | 2 |
+---+---+---+---+
| 2 |   |   | 3 |
+---+---+---+---+
| 3 | 4 | 5 | 4 |
+---+---+---+---+
```

Algorithms for motion planning

- **Road Map: Visibility Graph, Voronoi Diagrams**
 - Represent the connectivity of the free space by a network of 1-D curves
- **Cell Decomposition**
 - Decompose the free space into simple cells and represent the connectivity of the free space by the adjacency graph of these cells
- **Potential Methods**
 - Define a function over the free space that has a global minimum at the goal configuration and follow its steepest descent
Completeness of Planner

1. A motion planner is complete if it finds a collision-free path whenever one exists and return failure otherwise.

2. Visibility graph, Voronoi diagram, exact cell decomposition, navigation function provide complete planners.

3. Weaker notions of completeness, e.g.:
 - resolution completeness (PF with best-first search)
 - probabilistic completeness (PF with random walks)
 - A resolution complete planner discretizes the space and returns a path whenever one exists in this representation.
 - A probabilistically complete planner returns a path with high probability if a path exists. It may not terminate if no path exists.

Coordination of Multiple Robots/Agents

- Centralized Planning
 - Plan the motion of the robots in their “composite” configuration space
- Decoupled Planning \Rightarrow Decentralized Planning
 - Plan for each robot independently
 - Coordinate them later
 \Rightarrow Several possible schemes
Kinodynamic planning

Exploring Indoor Environments

- Short Range Sensor

Also show CMU Redteam video from 1:59
Exploring Indoor Environments

- Long Range Sensor

Planning under Uncertainty

<table>
<thead>
<tr>
<th>Environment</th>
<th>State</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical Planning</td>
<td>Deterministic</td>
<td>Observable</td>
</tr>
<tr>
<td>MDP (Markov Decision Processes), universal plans</td>
<td>Stochastic</td>
<td>observable</td>
</tr>
<tr>
<td>POMDPs (Partially Observable MDPs)</td>
<td>Stochastic</td>
<td>partially observable</td>
</tr>
</tbody>
</table>
What you should know

- To familiarize you with basic techniques of planning.
 - How to define configuration space
 - The basic idea behind
 - Visibility Graph methods
 - Voronoi methods
 - Cell Decomposition methods
 - Potential Field methods

- real-world planning problems

Major Projects & Advanced Topics

- Humanoid robots
- Search, rescue, escape.
- Car painting and cleaning
- Control and Planning for Robot Teams
- POMDP
- Game Theory
- And more...
Further Reading