
11th World Congress on Structural and Multidisciplinary Optimization
7th - 12th, June 2015, Sydney Australia

A Novel Constraint Handling Strategy for Expensive Optimization Problems

Kalyan Shankar Bhattacharjee1, Tapabrata Ray2

1 University of New South Wales, Canberra, ACT 2610, Australia, Kalyan.Bhattacharjee@.adfa.edu.au
2 University of New South Wales, Canberra, ACT 2610, Australia, T.Ray@.adfa.edu.au

1. Abstract
Constraints are inherently present in any real world problem. In the context of multidisciplinary design optimiza-
tion problems, such constraints arise out of physical laws, statutory requirements, user preferences etc. and are
often computed using computationally expensive analysis e.g. FEM, CFD, CEM etc. While population based
stochastic optimization algorithms are a preferred choice for the solution of such class of problems (often with the
aid of approximations), they typically adopt a full evaluation policy i.e. all constraints and objective functions for
all solutions are evaluated. Recent studies have highlighted the possibility of selected constraint evaluation (i.e. a
subset of relevant constraints are only evaluated), although learning the sequence (or the subset) of constraints is
far from trivial. In this paper, we introduce an approach for selective evaluation based on Support Vector Machine
(SVM) models, wherein promising solutions are identified and evaluated based on the trade-off between need to
learn and cost to learn. The performance of the proposed scheme is compared with other state-of-the-art constraint
handling methods using a set of well-studied engineering design optimization problems. The aspect of selective
evaluation has rarely been investigated in literature and the results clearly indicate the benefits selective evaluation
which is of immense value in the context of computationally expensive optimization problems.
2. Keywords: Constraint Handling, Classifiers, Selective evaluation.

3. Introduction
Most real world optimization problems involve constraints and feasible solutions need to satisfy them. A generic
constrained optimization problem can be expressed as:

minimize
X

f(x)

subject to gi(x)≥ 0, i = 1,2, . . . ,q
h j(x) = 0, j = 1,2, . . . ,r

where q represents the number of inequality constraints and r denotes the number of equality constraints. The
equality constraints are replaced by a pair of inequalities. The vector x = [x1 x2 . . .xn] denotes a solution repre-
sented using n design variables.

It is well known that the performance of all stochastic optimization algorithms are affected by the underlying
mechanism of constraint handling. Constraint handling is an active area of research and existing methods can
be classified into three categories i.e. (a) full evaluation policy with feasibility first principle: all constraints and
objectives are evaluated for all solutions and feasible solutions are preferred over infeasible solutions (objective
function value of infeasible solutions are essentially useless information) e.g. Non-dominated Sorting Genetic
Algorithm(NSGA-II) [1] (b) full evaluation policy with marginally infeasible solutions preserved or stochastically
preferred e.g. Infeasibility Driven Evolutionary Algorithm(IDEA) [5], Stochastic Ranking(SRES) [6], Epsilon
Differential Evolution(eps-DEA) [7] (objective function values of infeasible solutions are used in ranking solu-
tions) and (c) partial evaluation strategy e.g. evaluate till you violate[8] where constraints are evaluated in a
sequence (DEACS) until a violation is encountered. In the context of computationally expensive optimization
problems, partial evaluation policy offers the potential to reduce the number of function evaluations.

The evaluation cost can be further reduced if one can (a) screen potentially promising offsprings and (b) eval-
uate relevant constraints. In this paper, support vector machines (SVM) [9, 10] are used to identify promising
offsprings and the relevant set of constraints. In the proposed approach, a SVM classifier is used to estimate the
class label and the associated confidence about the quality of a solution. The use of a SVM classifier to identify
promising solutions appeared in [11, 12]. In this study, we have used SVM ranking [10] models to predict the rank
of a partially evaluated solution.

4. Proposed Approach
We adopt a generational model. The initial population is fully evaluated i.e. objective and all constraints for all
the individuals are evaluated and the information is stored in an Archive. The first set of N parents are identified
using roulette wheel selection, while the second set of N parents are identified using a random selection. A binary
tournament between these N pairs of solutions result in N participating parents and offspring solutions are created

1

using simulated binary crossover (SBX) and polynomial mutation (PM). Offspring solutions are screened using
a two-class SVM classifier, trained using the data from the Archive with its inputs being the variables of the
optimization problem (x) and the output being the final rank of the solutions. Offspring solutions predicted with a
class label of 1 are considered as potential solutions.

For any given potential solution, the probability of satisfying its ith constraint is given by Feasibility Indexi. A
value of 1 would indicate that it would satisfy the ith constraint and 0 otherwise. Similarly, for a solution under
consideration, Rank Indexi is computed for each constraint. The term Rank Indexi reflects the confidence that this
solution is among the top 50% in a list based on the ith constraint. To construct a list based on the ith constraint,
solutions are ordered based on the ith constraint values i.e. feasible and furthest from the ith constraint boundary at
the top and infeasible and the furthest from the ith constraint boundary at the bottom. In order to capture the local
behavior, for each potential offspring solution, the classifiers (one for each constraint) are trained using k closest (in
variable space) neighbors from the Archive. The inputs to these classifiers are the variable values and the outputs
are the corresponding ranks based on that particular constraint under consideration. For a potential offspring, the
constraint associated with least Feasibility Index and least Rank Index will be evaluated first. However, in the
situation where Feasibility index of a solution is same in all its constraints, the sequence of evaluation is based on
the following rule: (a) if all neighboring k solutions have all the constraints violated i.e. (Feasibility Index = 0), the
constraint having least Rank Index is evaluated first and (b) if all neighboring k solutions have all the constraints
satisfied i.e. (Feasibility Index = 1), the objective function for this solution is only evaluated since it is most likely
a feasible solution. In the next step, SVM ranking model is utilized to predict rank of the potential offspring in
all other constraints, where it has not been evaluated. In this ranking scheme, a regression model is created using
actual ranks of all the solutions from the Archive based on the evaluated constraint as inputs and ranks based on
other constraints or final rank as outputs. Hence, for any potential offspring solution, ranks based on all other
constraints and its final rank in the population can be predicted. Rank prediction and insertion in the population
are executed taking one offspring at a time instead of taking the whole set. Therefore insertion of one offspring
might affect the position of the previous offsprings.

It is important for any learning based scheme to focus the region of interest and progressively improve its
quality of prediction. To assist this, top solutions in a population undergo full evaluation (i.e. all constraints and
objective function values for these solutions are evaluated). Please note that the final ranking of the population
is based on feasibility first principle. The pseudo-code of the proposed approach is presented below: Classifier
Guided Constraint Selection Mechanism (CGCSM).

5. Numerical Experiments
The success of a constraint handling strategy can be assessed from two different angles (a) ability of the approach
to deliver the first feasible solution with minimal computational cost and (b) quality of the solution delivered
for a fixed computational budget. While the second metric is largely used within the evolutionary computation
community, such a metric does not solely assess the performance of constraint handling schemes. We objectively
evaluate the performance of CGCSM and compare it with IDEA, NSGA-II, DEACS and SRES using 5 well studied
benchmark engineering design problems: Belleville Spring [13], Helical Spring [13], Speed Reducer [14], and Step
Cone Pulley [15]. The properties of the objective functions, nature of constraints, number of active constraints and
the percentage of the feasible space are listed in Table 1.

Table 1: Properties of the Problems (Maximization Problem: max, Minimization Problem: min)

Problem n Obj ρ % LI NE NI NA
Belleville Spring(min) 4 Quadratic 0.2595 7 0 0 -
Helical Spring(min) 3 Polynomial 0.0316 9 0 0 -
Speed Reducer(min) 7 Polynomial 0.0962 11 0 0 -
Step Cone Pulley(min) 5 Polynomial 0.0000 0 3 8 -

where n: number of variable, Obj: Objective function type, ρ: Percentage ratio of feasible space over entire
search space, LI: number of linear inequalities, NE: number of equalities, NI: number of nonlinear inequalities
and NA: number of active constraints.

The relative sizes of the feasible region (feasibility ratio) is based on random sampling of 1,000,000 random
points. The results obtained using the proposed algorithm CGCSM are compared with those obtained using in-
feasibility driven evolutionary algorithm (IDEA) [5], non-dominated sorting genetic algorithm (NSGA-II) [1],
Constraint sequencing (DEACS) [8], and Stochastic ranking (SRES) [6]. A one-to-one comparison of CGCSM
with IDEA, NSGA-II, DEACS and SRES would offer insights on the actual utility of the classifier. Results, pre-
sented in Table 2, indicate the cost of evaluation till first feasible is obtained and Table 3 indicates the quality of
the solution after 1000 function evaluations equivalent to evaluating 1000 solutions during the course of optimiza-
tion using a full evaluation policy). As an example, for a problem involving 7 constraints, full evaluation of 1000
solutions would mean an evaluation budget of 8000. Each objective function evaluation or a constraint evaluation

2

Algorithm 1 CGCSM
SET: FEmax{Maximum evaluation budget}, N{Population size}, St{Confidence associated with SVM classifier (exponentially increases
from 0 to 0.8 over FEmax)}, Popbin{Repository of ordered solutions evaluated so far (includes partial and fully evaluated solutions)},
Archive{Repository of all fully evaluated solutions}

1: Initialize the population of N individuals using latin hypercube sampling
2: Evaluate Pop1:N,g1:q+2r , f and order them according to their final ranks (ordered based on feasibility first)
3: Popbin = Pop
4: Update FE, Update Archive
5: Update St
6: while (FE ≤ FEmax) do
7: Generate offspring solutions using BT, SBX and PM from Popbin1:N
8: Construct a binary SVM classifier: Top 100(1-St) percent solutions of the Archive is assigned a class label of 1
9: Offspring solutions unique w.r.t Archive and with a predicted class label of 1 constitutes the set of C eligible offsprings (Child pop)

10: for i = 1:C do
11: For every member of Child pop, calculate the Feasibility Indexi,1:q+2r and Rank Indexi,1:q+2r based on its k neighbors from the

Archive
12: if Feasibility Indexi,1:q+2r = 1 then
13: Evaluate Child popi, f
14: else if Feasibility Indexi,1:q+2r = 0 then
15: [val, index] = min(Rank Indexi,g1:q+2r); gindex is the constraint to be evaluated
16: else
17: [val1, list1] = sort(Feasibility Indexi,g1:q+2r

); [val2, list2] = sort(Rank Indexi,g1:q+2r)
18: Find index, where list1 has a preference over list2 and evaluate Child popi,gindex
19: end if
20: Update FE
21: Construct SVM ranking model with inputs being rank of solutions in gindex and outputs being ranks in other constraints and final

rank from Archive
22: Predict rank of Child popi in other constraints and its final rank based on the above SVM model
23: if (Final rank of Child popi ≤ (1−St)|Popbin|) then
24: Evaluate Child popi,g1:q+2r and place it in Popbin based on its actual final rank
25: Update FE, Update Archive
26: else
27: Place Child popi in Popbin according to its predicted final rank
28: end if
29: end for
30: end while
*FE denotes the evaluation cost i.e. 1 unit for each objective and 1 unit for each constraint evaluated

incurs a cost of 1 unit. Please take note that each equality constraints are imposed as two inequalities using all the
algorithms except SRES (kept same as original formulation), however total evaluation budget is kept same for all
the algorithms.

6. Results and discussion
The following parameters were used in this study: population size: 40; total evaluation budget is 1000 times the
total number of constraints and objective for the problem; crossover probability: 0.9; mutation probability: 0.1;
distribution index for crossover: 20; distribution index of mutation: 30; confidence in the classifier varied exponen-
tially from 0 to 0.8 and the number of neighbors (k) was set to 12. We refer the readers to [9, 10] for the details on
support vector machine classifiers. In our study, the standard SVM classifier of MATLAB toolbox was used with
a Gaussian Radial Basis Function kernel with default settings and Karush-Kuhn-Tucker (KKT) violation level set
as 0.05. Also for all the algorithms, same initial population has been used for a fair comparison.

6.1. Performance on Problems
Convergence plots of mean sum of constraint violations (CV) and average number of infeasible individuals (NI)
over the evaluation budget are shown in Figure 1a, Figure 2a, and Figure 3a for Belleville Spring, Speed Reducer,
and Step Cone Pulley respectively. While, for the same problems the convergence plots of the mean objective func-
tion value (Obj) and average number of feasible individuals (NF) versus evaluation budget are shown in Figure 1b,
Figure 2b, Figure 3b. In the context of partial evaluation policy (CGCSM and DEACS), solutions are evaluated
offline to obtain the sum of constraint violation and objective function value for best individual in each genera-
tion. Hence, a fill up cost of 1 unit was assumed (i.e. to account for the case when a partially filled population is
delivered).

The best, mean, worst, median and standard deviation measures of the best solution across 30 independent runs
obtained using CGCSM, IDEA, NSGA-II, DEACS and SRES are presented in Table 3.

The observations from the results can be summarized as follows:
(a) In Belleville Spring problem, Figure 1 indicates that CGCSM has the highest convergence rate when compared
with other algorithms both in the contexts of mean sum of constraint violations and mean objective function value.

3

0

100

200

C
o

n
s
tr

a
in

t
V

io
la

ti
o

n
 (

C
V

)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

Evaluation Budget

N
o

.
o

f
in

fe
a

s
ib

le
 (

N
I)

CGCSOM−CV
IDEA−CV
NSGA−II−CV
DEACS−CV
SRES−CV

CGCSOM−NI
IDEA−NI
NSGA−II−NI
DEACS−NI
SRES−NI

(a) Mean sum of CV and no. of infeasible individuals ver-
sus cost: Belleville Spring

2

3

4

5

6

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 (

O
b
j)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30

40

Evaluation Budget

N
o
.
o
f
fe

a
s
ib

le
 (

N
F

)

CGCSOM−Obj
IDEA−Obj
NSGA−II−Obj
DEACS−Obj
SRES−Obj

CGCSOM−NF
IDEA−NF
NSGA−II−NF
DEACS−NF
SRES−NF

(b) Mean Obj and no. of feasible individuals versus cost:
Belleville Spring

Figure 1: Convergence plot: Belleville Spring

0

0.05

C
o
n
s
tr

a
in

t
V

io
la

ti
o
n
 (

C
V

)

0 2000 4000 6000 8000 10000 12000
0

50

Evaluation Budget

N
o
.
o
f
in

fe
a
s
ib

le
 (

N
I)

CGCSOM−CV
IDEA−CV
NSGA−II−CV
DEACS−CV
SRES−CV

CGCSOM−NI
IDEA−NI
NSGA−II−NI
DEACS−NI
SRES−NI

(a) Mean sum of CV and no. of infeasible individuals ver-
sus cost: Speed Reducer

3000

3200

3400

3600

3800

4000

4200

4400

4600

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 (

O
b
j)

0 2000 4000 6000 8000 10000 12000
0

5

10

15

20

25

30

35

40

Evaluation Budget

N
o
.
o
f
fe

a
s
ib

le
 (

N
F

)

CGCSOM−Obj
IDEA−Obj
NSGA−II−Obj
DEACS−Obj
SRES−Obj

CGCSOM−NF
IDEA−NF
NSGA−II−NF
DEACS−NF
SRES−NF

(b) Mean Obj and no. of feasible individuals versus cost:
Speed Reducer

Figure 2: Convergence plot: Speed Reducer

0

0.5

1

C
o

n
s
tr

a
in

t
V

io
la

ti
o

n
 (

C
V

)

0 5000 10000 15000
39

40

41

Evaluation Budget

N
o

.
o

f
in

fe
a

s
ib

le
 (

N
I)

CGCSM−CV
IDEA−CV
NSGA−II−CV
DEACS−CV
SRES−CV

CGCSM−NI
IDEA−NI
NSGA−II−NI
DEACS−NI
SRES−NI

(a) Mean sum of CV and no. of infeasible individuals ver-
sus cost: Step Cone Pulley

0

0.5

1

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 (

O
b

j)

0 5000 10000 15000
−1

0

1

Evaluation Budget

N
o

.
o

f
fe

a
s
ib

le
 (

N
F

)

CGCSM−Obj
IDEA−Obj
NSGA−II−Obj
DEACS−Obj
SRES−Obj

CGCSM−NF
IDEA−NF
NSGA−II−NF
DEACS−NF
SRES−NF

(b) Mean Obj and no. of feasible individuals versus cost:
Step Cone Pulley

Figure 3: Convergence plot: Step Cone Pulley

This problem has relatively larger feasibility ration when compared to others. One can also observe from Table 3
that CGCSM outperforms other algorithms in the terms of the median optimal solution delivered. However, SRES
is the best in terms of its ability to deliver the first feasible solution (Table 2 and Figures 1b). (b) CGCSM is able
to deliver its first feasible solution at minimum cost for the Helical Spring design problem (Table 2). The design
space for this problem is highly constrained. However quality of median optimal solution delivered by DEACS
is best closely followed by CGCSM (Table 3). (c) Speed Reducer is also a highly constrained design problem
which has highest number of linear inequalities among the problems discussed. The spread of the solutions is
within 0.6% of the average objective value for DEACS, while it is 1.1% for CGCSM and much higher for others.
This indicates better quality of convergence for the algorithms having partial evaluation policy in this problem.
CGCSM performs better in terms of convergence (both mean CV and mean objective function value) than others.
(d) Step Cone Pulley is an interesting problem as it has 8 non-linear inequality and 3 equality constraints which
makes the problem highly constrained and difficult to solve. From Figure 3b, it can be observed that none of the
algorithms could deliver feasible solutions within the fixed computational budget. However Figure 3a indicates
better convergence of CGCSM and the final median violation values is also the lowest for CGCSM.

4

Table 2: Statistics of evaluation cost till first feasible for Problems

Problems Algorithms Best Mean Median Worst Std Success

Belleville Spring

CGSCM 160.0000 1997.3793 1616.0000 5994.0000 1609.0422 29.0000
IDEA 160.0000 2280.0000 1528.0000 6496.0000 1767.8565 29.0000

NSGA-II 160.0000 2280.0000 1528.0000 6496.0000 1767.8565 29.0000
DEACS 160.0000 1367.5000 1228.0000 3201.0000 792.5307 30.0000
SRES 160.0000 1967.3600 1048.0000 7664.0000 2130.4546 25.0000

Helical Spring

CGSCM 920.0000 2314.8571 2130.0000 4780.0000 991.7325 21.0000
IDEA 1450.0000 3317.0833 2730.0000 7610.0000 1583.5691 24.0000

NSGA-II 1450.0000 3317.0833 2730.0000 7610.0000 1583.5691 24.0000
DEACS 927.0000 3027.7000 2974.0000 6305.0000 1250.3888 30.0000
SRES 530.0000 4978.4615 4740.0000 8760.0000 2762.9267 13.0000

Speed Reducer

CGSCM 336.0000 1622.0000 1428.0000 3204.0000 697.0129 30.0000
IDEA 336.0000 2294.4000 2100.0000 6816.0000 1267.1713 30.0000

NSGA-II 336.0000 2294.4000 2100.0000 6816.0000 1267.1713 30.0000
DEACS 336.0000 1246.0333 1224.0000 2550.0000 601.8644 30.0000
SRES 336.0000 4971.8571 5106.0000 9984.0000 2692.2567 28.0000

Step Cone Pulley

CGSCM NaN NaN NaN NaN NaN 0.0000
IDEA NaN NaN NaN NaN NaN 0.0000

NSGA-II NaN NaN NaN NaN NaN 0.0000
DEACS NaN NaN NaN NaN NaN 0.0000
SRES NaN NaN NaN NaN NaN 0.0000

Table 3: Statistics for Problems

Problems Algorithms Feasibility Best Mean Median Worst Std Success

Belleville Spring

CGSCM Feasible 2.2507 2.9440 2.6626 6.7106 0.9822 29.0000
Infeasible 0.0000 0.0007 0.0000 0.0205 0.0037 1.0000

IDEA Feasible 2.4369 3.0897 2.8994 4.9255 0.5972 29.0000
Infeasible 0.0000 0.0006 0.0000 0.0167 0.0030 1.0000

NSGA-II Feasible 2.2319 3.1649 2.9879 6.4377 0.8304 29.0000
Infeasible 0.0000 0.0006 0.0000 0.0167 0.0030 1.0000

DEACS Feasible 2.4165 3.1518 3.1642 4.0260 0.4003 30.0000
Infeasible 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

SRES Feasible 5.9192 5.9192 5.9192 5.9192 0.0000 1.0000
Infeasible 0.0000 232.2841 1.0874 4625.5502 853.9785 29.0000

Helical Spring

CGSCM Feasible 2.8223 4.0102 3.1356 6.9907 1.4696 21.0000
Infeasible 0.0000 0.0659 0.0000 0.7494 0.1596 9.0000

IDEA Feasible 2.7684 3.9751 3.3809 7.1769 1.2899 24.0000
Infeasible 0.0000 0.0438 0.0000 0.5380 0.1218 6.0000

NSGA-II Feasible 2.8068 4.1526 3.4674 7.3881 1.5122 24.0000
Infeasible 0.0000 0.0438 0.0000 0.5380 0.1218 6.0000

DEACS Feasible 2.7434 2.9800 2.9937 3.1405 0.1057 30.0000
Infeasible 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

SRES Feasible 3.7105 3.7105 3.7105 3.7105 0.0000 1.0000
Infeasible 0.0000 0.5466 0.5863 1.4689 0.3452 29.0000

Speed Reducer

CGSCM Feasible 3000.0118 3024.7515 3014.0820 3182.4136 33.0295 30.0000
Infeasible 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

IDEA Feasible 3005.2093 3073.7129 3033.5242 3578.8939 116.8753 30.0000
Infeasible 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

NSGA-II Feasible 3007.6698 3138.1983 3042.9740 4152.7143 249.6745 30.0000
Infeasible 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DEACS Feasible 3025.9020 3068.4133 3062.5951 3121.7496 18.5588 30.0000
Infeasible 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

SRES Feasible 3259.1542 3684.9077 3684.9077 4110.6611 425.7534 2.0000
Infeasible 0.0000 0.0207 0.0184 0.0636 0.0175 28.0000

Step Cone Pulley

CGSCM Feasible NaN NaN NaN NaN NaN 0.0000
Infeasible 0.0005 0.0046 0.0040 0.0118 0.0028 30.0000

IDEA Feasible NaN NaN NaN NaN NaN 0.0000
Infeasible 0.0018 0.0083 0.0066 0.0304 0.0065 30.0000

NSGA-II Feasible NaN NaN NaN NaN NaN 0.0000
Infeasible 0.0018 0.0083 0.0066 0.0304 0.0065 30.0000

DEACS Feasible NaN NaN NaN NaN NaN 0.0000
Infeasible 0.0811 0.3527 0.3624 0.7589 0.1719 30.0000

SRES Feasible NaN NaN NaN NaN NaN 0.0000
Infeasible 0.2134 0.5110 0.4698 1.0447 0.1959 30.0000

Since only promising solutions are evaluated, use of classifiers would reduce the computational cost. However,
the classifiers need to learn and their assessment needs to be reliable. The process of learning requires information
from the evaluated solutions. Although use of poorly trained classifiers would save computational cost, the search
outcome may not be satisfactory. To achieve this balance, the confidence associated with the classifier is varied
from 0 to 0.8 exponentially during the course of search. In case of high confidence associated with the classifier,
very few solutions would be evaluated and in turn the classifier would not have the opportunity to learn from di-
verse solutions. These observations seems to favor CGCSM for problems having highly constrained search space.
In the context of evaluation cost associated with first feasible identification, performances of CGCSM and DEACS
are nearly similar. However, in terms of convergence (both mean CV and mean objective function value) CGCSM
performs better in 3 out of 4 problems.

5

7. Summary and Conclusions
Real life optimization problems often involve objective and constraint functions that are evaluated using computa-
tionally expensive numerical simulations e.g. computational fluid dynamics (CFD), finite element methods (FEM)
etc. In order to solve such classes of problems, surrogate assisted optimization (SAO) methods are typically used,
wherein computationally cheap and less accurate surrogates/approximation models of objectives/constraints are
used during the course of search. In this paper, we explore an alternative path i.e. one where promising solutions
are identified using support vector machine (SVM) based models. The key difference being, SVM models are used
to identify promising solutions without explicitly attempting to approximate objective and constraint functions.
Furthermore, for every promising solution, the approach identifies the constraints that are most likely to be violated
and evaluates them first. In the event the constraints and objectives are evaluated using independent computation-
ally expensive analysis (e.g. multi-disciplinary optimization), such an approach would only evaluate relevant con-
straints and/or objectives that are necessary to ascertain the rank of the solutions. The search behavior of CGSCM
is compared with the following: NSGA-II (algorithm adopts a full evaluation policy), IDEA(algorithm maintains
selected infeasible solutions), DEACS (algorithm evaluates selected set of constraints) and finally SRES (algorithm
stochastically prefers infeasible solutions). The performance of the algorithm is further objectively assessed using
a number of constrained engineering design optimization problems with limited computational budget. The rate
of convergence of CGCSM is better for most of the problems and the final set of results are clearly better on all
problems studied in this paper. We hope that this study would prompt design of efficient algorithms that selectively
evaluate solutions and in particular selected set of constraints on the fly i.e. based on the trade-off between need to
learn/evaluate and cost to learn.

8. References

[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on
Evolutionary Computation, 6 (2), 182-197, 2002.

[2] D. W. Coit, and A. E. Smith, Penalty guided genetic search for reliability design optimization, Computers and Industrial Engineering,
Special Issue on Genetic Algorithms, 30 (4), 895–904, 1996.

[3] S. Koziel and Z. Michalewicz, A decoder-based evolutionary algorithm for constrained parameter optimization problems, Proceedings of
the 5th Parallel Problem Solving from Nature – PPSN V, Lecture Notes in Computer Science, T. Bäck, A. E. Eiben, M. Schoenauer,
and H.-P. Schwefel, (Eds.), Springer, Heidelberg, Germany, 5199, 231-240, 1998.

[4] A. Fitzgerald, and D. P. O’Donoghue, Genetic repair for optimization under constraints inspired by arabidopsis thaliana, Parallel Problem
Solving from Nature–PPSN X, Lecture Notes in Computer Science, G. Rudolph, T. Jansen, S. Lucas, C. Poloni, and N. Beume, (Eds.),
Springer, Dortmund, Germany, 5199, 399-408, 2008.

[5] T. Ray, H. K. Singh, A. Isaacs, and W. Smith, Infeasibility driven evolutionary algorithm for constrained optimization, Constraint-handling
in evolutionary optimization, Springer, 145-165, 2009.

[6] T. P. Runarsson and X. Yao, Stochastic ranking for constrained evolutionary optimization, IEEE Transactions on Evolutionary Computa-
tion, 4 (3), 284-294, 2000.

[7] T. Takahama and S. Sakai, Constrained optimization by the ε constrained differential evolution with gradient-based mutation and feasible
elites, IEEE Congress on Evolutionary Computation (CEC), 1-8, 2006.

[8] M. Asafuddoula, T. Ray, and R. Sarker, Evaluate till you violate: A differential evolution algorithm based on partial evaluation of the
constraint set, IEEE Symposium on Differential Evolution (SDE), 31-37, 2013.

[9] J. A. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, Least squares support vector machines, 4, World Scientific,
2002.

[10] O. Chapelle and S. S. Keerthi, Efficient algorithms for ranking with SVMs, Information Retrieval, 13 (3), 201-215, 2010.
[11] I. Loshchilov, M. Schoenauer, and M. Sebag, A mono surrogate for multiobjective optimization, Proceedings of the 12th annual confer-

ence on Genetic and evolutionary computation, 471-478, ACM, 2010.
[12] S. Bandaru, A. Ng, and K. Deb, On the performance of classification algorithms for learning pareto-dominance relations, IEEE Congress

on Evolutionary Computation (CEC), 1139-1146, 2014.
[13] J. N. Siddall, Optimal engineering design: principles and applications, CRC Press, 1982.
[14] J. Golinski, Optimal synthesis problems solved by means of nonlinear programming and random methods, Journal of Mechanisms, 5 (3),

287-309, 1970.
[15] S. S. Rao, and S. S. Rao, Engineering optimization: theory and practice, John Wiley & Sons, 2009.

6

