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Abstract

We examine two models for stirring devices that operate at low
Reynolds number. In each, elliptical paddles are used to stir
a vat of fluid. In the first model, a single paddle stirs an infi-
nite expanse of inviscid fluid; in the second, three paddles stir
a highly viscous fluid. Such models are clearly a caricature of
any real mixing device, but they do allow accurate simulation in
a genuinely time-dependent geometry, appropriate for impeller-
driven mixers. The first model is simple enough to yield an ex-
act expression for the velocity field and so allow numerical par-
ticle tracking to be carried out to high precision. The choice of
a suitable mode of operation of the device is essentially a matter
of optimising the system parameters. In our second model, we
show how, by the use of more than one stirring element, a high
quality of stirring can bebuilt in, giving a design that performs
well, regardless of the exact system parameters, such as paddle
design or fluid rheology.

Introduction

Many modern applications of fluid mixing pose a particular
challenge because the associated flows are laminar, with low
Reynolds number. (The Reynolds number Re= UL/ν, where
U , L and ν are, respectively, a typical velocity scale, a typi-
cal length scale and the kinematic viscosity of the fluid.) An
example is the mixing in microfluidic devices such as used in
the biotechnology industry. Fortunately for such applications, it
is now well established [2] that good mixing can be achieved
in slow laminar flows, provided that fluid particles undergo
chaotic motions. The challenge is thus to design devices and
corresponding modes of operation that achieve this end, of the
chaotic advection of fluid particles [1].

The stirring effectiveness of chaotic advection was first shown
in rather artificial ‘devices’ [1, 2], chosen because an exact
mathematical expression is available for the velocity field, and
hence numerical simulation of extreme accuracy is possible;
these simple models were entirely adequate for the pedagogi-
cal purpose at hand. Over the past twenty years or so, a wide
variety of increasingly sophisticated mathematical models have
been developed for simple mixing devices [2]. Most rely on a
tuning of the system parameters to optimise the mixing quality
that is achieved.

A recent significant theoretical advance in the design of laminar
mixers is the work of Boyland, Aref and Stremler [3], which
concerns stirring achieved by topologically nontrivial motions
of three or more stirring elements (e.g., rods used to stir a fluid
in a vat). Given only the topology of the motions of the stirring
elements, it is possible to compute a rate of stretch of material
lines. The fluid rheology, e.g., whether Newtonian or otherwise,
is unimportant. Of course, given such moderate input informa-
tion, the theory does not specify the size of the chaotic region
generated by the boundary motions, nor does it specify exactly
which material lines enjoy (at least) the predicted rate of stretch.
However, in both experiments [3] and numerical simulations[6]
the associated designs seem to work remarkably well.

This paper begins by introducing a model for a simple stirring
‘device’, comprising a single elliptical paddle in an infinite vat

of fluid. This model is clearly unrealistic in assuming an in-
finite expanse of fluid, but it possesses an important feature
of all batch mixers, that the geometry of the device changes
with time as the stirring element sweeps through the fluid. By
contrast, many of the first experimental and numerical studies
of chaotic advection were carried out in theeccentric annular
mixer (see [2] for an account of the history), whose geometry
is fixed. As with all other simple models, the elliptic paddle
requires careful tuning of its mode of operation to stir the fluid
effectively.

We then discuss how this design can be made somewhat more
realistic, by adopting a finite geometry and employing more
than one stirring element (and a viscous fluid model). In this
second model, while different degrees of effectiveness arestill
possible by varying the system parameters, we shall see thata
certain quality of mixing is built in once a topologically non-
trivial motion of the stirring elements is specified.

Stirring with a single paddle

One of the simplest stirring devices is a paddle. Consider the
flow in two dimensions generated by the motion of an elliptical
paddle. For simplicity, we take the fluid to be inviscid, and
occupying the entire infinite region exterior to the paddle.This
is clearly not intended as a practical model for reality, butit has
enough complication to generate chaotic advection yet enough
simplicity to permit an exact (classical) mathematical solution
for the velocity field.

We consider irrotational flow, in which case the streamfunction
ψ(x,y,t) satisfies Laplace’s equation

∇2ψ = 0.

In order to stir the fluid, the paddle must execute some mo-
tion: the ‘stirring protocol’. It is necessary to select an appro-
priate protocol that stirs the fluid effectively. Our goal will be
to generate a significant region in which fluid particles undergo
chaotic motion, characterised by exponential-in-time separation
of neighbouring particles. By contrast, stirring is less effec-
tive in regular regions, with algebraic-in-time separation of fluid
particles. In two dimensions, time dependence of the stream-
function is necessary for chaos. Some immediate candidatesfor
stirring protocols are readily seen to generate exclusively regu-
lar particle motions, since they correspond to steady streamlines
in an appropriate frame of reference. Examples are: (i) a paddle
whose axis is fixed, and which rotates about this axis (i.e., an
‘impeller’), because the streamfunction is steady in a frame co-
rotating with the paddle; and (ii) a paddle that sweeps around in
a large circle, one ‘nose’ always pointing towards the centre of
the circle, for a similar reason.

The streamfunctionψ is most readily constructed in elliptical
coordinates(ξ,η), given by

x = ccoshξcosη, y = csinhξsinη,

for an ellipse centred at the origin, with major axis of length
2a along thex-axis, and minor axis of length 2b along they-
axis. The constantc =

√
a2 +b2. If the ellipse is translating



Figure 1: A semi-circular stirring protocol for an elliptical pad-
dle. The ellipse starts at right, moves counterclockwise around
the semicircular path, then straight along thex-axis. One loop
around the circuit defines a single period of the stirring protocol.

with velocity (U,V ) and is rotating about its axis with angular
velocity ω, then the appropriate solution to Laplace’s equation
that satisfies the no-penetration condition on the perimeter of
the ellipse is [7, 9]

ψ = Ae−ξ(Ubsinη−Vacosη)+ 1
4ω(a+b)2e−2ξ cos2η,

whereA = [(a + b)/(a− b)]1/2. Corresponding formulae hold
for an ellipse centred elsewhere or in a different orientation, but
they are easily obtained by appropriate rotation or translation of
the axes, and are not given here.

Given the streamfunction, we track fluid particles by solving
for each particle the Lagrangian equations of motion, i.e.,the
coupled ODEs

ẋ = u(x,y,t), ẏ = v(x,y,t), (1)

whereu = ψy and v = −ψx, subject to an appropriate initial
condition for each particle.

A simple stirring protocol that cannot essentially be reduced to
steady flow through a change of frame of reference is illustrated
in Figure 1. Here the ellipse moves along a semicircular path.
On the curved part of the path, the ellipse rotates about its axis
so as to point one nose towards the centre of the arc; on the
straight part of the path, the ellipse does not rotate about its axis
(ω = 0). In this example, the circle has diameter 3, whilea = 2
andb = 1. This is clearly only one possible stirring protocol;
its key feature from the point of view of successfully generating
chaotic fluid particle trajectories is that the paddle cannot be
brought to rest by moving to a new frame of reference, unless
the change of frame is itself time dependent.

One simple, mostly qualitative, diagnostic of the stirringquality
is the Poincaré map. Here the positions of a few fluid particles
are followed by integrating (1) in time. The positions of the
particles are then plotted stroboscopically, after 1,2, . . . periods
of the stirring protocol: where the eye sees closed curves inthe
Poincaré map, there isregular motion of fluid particles; where
the eye sees a random collection of dots, there ischaotic motion.

Figure 2 shows the Poincaré map associated with the protocol in
Figure 1. There are two large regular regions visible, and a sig-
nificantchaotic sea; indeed the bulk of the fluid, sufficiently far
from the ellipse, undergoes regular particle motion. One may
attempt to devise a better stirring protocol, in the sense ofone
that increases the size of the chaotic region, or one that increases
the stretch rate experienced by fluid elements (this latter,quan-
titative diagnostic of the stirring clearly requires a more sophis-
ticated measure than the ‘by-eye’ examination of the Poincaré
map). One might choose a less symmetrical path for the pad-
dle, or a different paddle aspect ratio; one might adopt a more
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Figure 2: Poincare map for the stirring protocol in Figure 1,
with parameter values as indicated in the text.

sophisticated model for the fluid than the simple inviscid, irro-
tational one used here; one might confine the fluid in a finite
vat. But with a single paddle, the only option is to tune the stir-
ring protocol and the other parameters of the system to obtain
the desired end of improved stirring performance. It is in the
nature of chaotic flows that the resulting, tuned stirring protocol
has an unfortunate susceptibility to further parametric pertur-
bations; this is an undesirable feature of any real mixer, since
one would like the design to be largely insensitive to the precise
details of the underlying design.

The next section indicates how this parametric fussiness can be
avoided, and high quality stirring can be ‘built in’ by the simple
device of using multiple stirring elements.

Stirring with a multiple paddles

There does not appear to be a simple analytical expression avail-
able for the flow driven byn elliptical paddles, whenn > 1. In
computing such a flow, we must therefore resort to a numeri-
cal evaluation of the velocity field. Since numerical errorsgrow
geometrically in the simulation of chaotic particle motions, it
is highly desirable to have a means of computing the veloc-
ity field with a truncation error smaller than that introduced
by the time integration routine for the fluid particles. Sucha
method has been described elsewhere [6, 10] when the stirring
elements have circular cross-section; the method allows simu-
lation in finite or infinite domains, and of either inviscid, irro-
tational flow or highly viscous (Stokes) flow. The method uses
a complex-variable formulation of the problem: the complex
potentialw(z,z∗,t) is subject to either Laplace’s equation

∂2w
∂z∂z∗

= 0 (2)

or the biharmonic equation

∂4w
∂2z∂2z∗

= 0 (3)

in a time-dependent multiply connected geometry (herez∗ is the
complex conjugate ofz).

The corresponding streamfunction takes the form

ψ = f (z)+ f ∗(z∗)

or
ψ = z∗ f (z)+ z f ∗(z∗)+g(z)+g∗(z∗),

respectively, in the models (2) or (3), for some analytic func-
tions f andg. The solution forf (or for f andg, as appropriate)



Figure 3: Instantaneous streamlines at three instants during an
exchange of the rightmost pair of stirring elements.

is sought in the form of a finite system of singularities (located
inside the stirring elements, and hence not in the physical fluid
domain) together with Laurent series centred in each stirring el-
ement. The coefficients of the singularities and the terms inthe
Laurent series are determined numerically by minimising the
squared error in the boundary conditions; the series coefficients
decay geometrically and so only a few terms (around 10 to 20)
need be kept in order to generate a highly accurate velocity field.

If the same expansions are used for elliptical paddles, theydo
not converge so rapidly and they struggle to provide an accept-
able level of accuracy when the paddles depart from circular
symmetry. However, if the component of the solution associ-
ated with each paddle is modified, by making a suitable con-
formal mapping of the ellipse, parametrised byz = z(θ), say,
to a circle, parametrised byZ = exp iθ, say, and the complex
potential is written in terms ofZ rather thanz, then the series
become spectrally convergent once more, and the velocity field
can readily be computed, almost down to machine precision.
The extraordinary accuracy is maintained even down to ellip-

Figure 4: The stretching of a line element, initially of unitlength
and located between the points(2/7,±1/2) under the stirring
protocol described in the text. The vat is a unit circle, centred at
the origin.

tical paddles of extreme aspect ratio (we have computed flows
down tob/a = O(10−7)). In fact, by an appropriate conformal
mapping, exactly flat paddles, of zero mathematical width, can
be simulated by this method, with no numerical difficulties.

The numerical method allows an arbitrary number of stirring
elements, of different sizes and aspect ratios, translating and ro-
tating in arbitrary fashion. We illustrate in Figure 3 Stokes flow
with n = 3 stirring rods, in a circular vat. Each elliptical paddle
has aspect ratiob/a = 10−3 and length 2a = 2/7; the radius of
the vat is scaled to unity. The three paddles initially lie equis-
paced along the real (horizontal) axis. The figure illustrates the
instantaneous flow pattern as the positions of the rightmostpair
are exchanged; the exchange is accomplished by rotating the
centresc1 andc2 of the two paddles about the pointc3 mid-way
betweenc1 andc2. As the paddles are moved, they are rotated
about their axes so as always to ‘point towards’c3. Note that
the flow at any instant is smooth and laminar.

Topologically nontrivial motions involving three stirring ele-



ments are readily constructed by considering motions that cor-
respond to nontrivialplaiting or braiding motions [3]. One such
motion is achieved by moving the stirring rods according to the
following protocol: first the right-hand pair are interchanged, in
a counterclockwise motion, then the new left-hand pair are in-
terchanged, but clockwise. This pair of interchanges constitutes
a single period of operation of the device (i.e., one application
of the stirring protocol); it is akin to the natural plaitingof three
strands of hair.

The batch stirring device described above, with multiple stirring
elements, serves as a simplified model for commercial planetary
mixers. Although it now becoming apparent that topologically
nontrivial motions such as described above build in a high mix-
ing quality, standard batch mixers do not at present employ any
such stirring protocol (but see [8]). It might superficiallyappear
that a complicated system of gearing is necessary to generate
the motions described in the previous paragraph, and that this
might be the reason for the commercial vacuum; however, with
some ingenuity, topologically equivalent motions are readily ac-
complished with only simple gearing, such as already used on
commercial devices, together with fixed baffles [6].

The evolution of a line element of unit initial length is shown
in Figure 4, after one, two and three applications of the stirring
protocol. (In this case we have increased the aspect ratio ofthe
paddles so thata = 1/7 andb = 1/50, so the finite thickness
of the paddles can be seen.) The number of points in the line
has been dynamically increased where necessary to maintain
adequate resolution. The requirement of good resolution effec-
tively constrains accurate calculations of the length of the line
element to two or three further periods of the stirring protocol
beyond those illustrated in Figure 4. We find that the length
of the line after one, two and three periods of the protocol is,
respectively, 4.3, 14 and 42. The dramatic rate of line stretch
is relatively insensitive to the exact motions of the stirring ele-
ments or their exact dimensions. This is the hallmark of a topo-
logically chaotic mixer design.

Conclusions

We have illustrated in this paper a simple model for a stirring
‘device’ that uses a single elliptical paddle in an infinite expanse
of inviscid fluid undergoing irrotational motion. While this is
not intended as a true model for any realistic device, it is a good
pedagogical tool for illustrating the concept of chaotic advec-
tion, using no more than a basic undergraduate knowledge of
classical hydrodynamics and the numerical solution of ordinary
differential equations. In this respect, it is in the same spirit as
Aref’s ‘blinking vortex flow’ [1], although (marginally) more
realistic, in possessing no flow singularities (these play havoc
with numerical computations of the evolution of material lines).
The model allows one to experiment (numerically) to find good
stirring protocols by varying the system parameters, including
the path taken by the stirring element and its shape and size.

Better than this parametric optimisation is to use topological
ideas to build in some degree of mixing quality [3, 6, 8]. Then
the stirring device that is so designed operates ‘robustly’in the
sense that it remains insensitive to the nature of the fluid being
mixed and to its exact specifications, provided the topologyof
the motion of the stirring elements is unaltered.

So far we have, as illustrated here, simulated flows in the two
mathematically ‘easy’ limits (for a Newtonian fluid at zero and
infinite Reynolds numbers) and it would be highly desirable
to investigate the effectiveness of the topologically designed
stirring devices for a Newtonian fluid at finite Reynolds num-
ber [5], or for other fluids. Results from the two cases already
studied [6] show a promising indication of the robustness ofthe

topological designs, but clearly further research is warranted.

Finally, we note that one important question that needs to be
considered with any mathematical model is its degree of ap-
plicability. To address this question in the present context, we
have performed laboratory experiments on a batch mixer with
a single stirring element (of circular cross-section) [4].Our
results indicate that the two-dimensional Stokes flow approx-
imation performs well for genuinely small Reynolds numbers
(e.g., Re= O(10−3)). However, when the Reynolds number is
merely moderate (Re= O(1)), there are significant changes to
the streamlines of the flow. Furthermore, the flow is no longer
quasi-steady (i.e., it depends on more than just theinstanta-
neous motions of the boundaries). However, fortopologically
chaotic flows generated using three or more stirring elements,
we expect a much greater degree of robustness of the results
to changes in the Reynolds number. Of course, the requisite
experiments to demonstrate this have not yet been performed
(but see [3]); we hope in the future to carry out such experi-
ments, which may provide strong validation of the topologically
chaotic theory.
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