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Abstract

The aim of this work is to design a forebody of minimum overall
length that nevertheless allows laminar unseparated flow. This
design goal is formulated as a constrained optimization prob-
lem. Classical potential and boundary-layer flow solvers are
combined with the Feasible Direction Interior Point optimiza-
tion algorithm to obtain representative forebody geometries in
plane-symmetric and axisymmetric flow. The optimal forebody
shape consists of an essentially flat plate normal to the flow,
connected to the aftbody by a smooth zero shear-stress surface.

Introduction

We consider constant-density incompressible steady viscous
laminar flow past plane-symmetric and axisymmetric bodies at
zero angle of incidence (i.e., the axis or plane of symmetry is
aligned with the flow). The aft section of the body is a constant-
thickness plate or constant-diameter cylinder that is either of in-
finite length, or (as is the case in this paper) sufficiently long that
details of how the geometry is terminated only weakly affect the
upstream flow. If the forward section of the body (forebody) is
too short or improperly shaped, forebody boundary-layer sep-
aration will occur. Separation is usually undesirable, yet it is
sometimes necessary to make the forebody as short as possible.
Our aim is to design a forebody of minimum overall length that
nevertheless allows unseparated flow.

Let the position vector of a point on the forebody beX(s) =
(X(s),Y(s)), wheres is the arclength measured from the axis of
symmetry,X(0) = (−L,0), X(s0) = (0,D/2), and the fore/aft-
body junction is located ats= s0 (Figure 1). The objective is
to

minimize f (X) =−X(0) = L (1)

subject to

gA(X) =−τ(s)≤ 0, 0≤ s≤ s0, (2)

whereτ is the surface shear stress. The objective function is
linear, hence the solution lies on a boundary defined by the con-
straints and will exhibit a point or region of incipient separation,
that is, zero shear stress. In general, the constraint permits non-
convex geometry. In this paper, the geometry is restricted by
imposing the secondary constraint

gB(X) =−dX
ds

=−Xs≤ 0, 0≤ s≤ s0, (3)

thus excluding hollow-nosed geometry (X(s) < X(0) for some
s> 0), while permitting lobed geometry (Y(s) >Y(s0) for some
s< s0). A more restrictive constraint on the curvature,−κ(s)≤
0, would explicitly enforce convex geometry.

Numerical methods

Geometry

The aftbody geometry is a finite-length enclosed body consist-
ing of a flat plate (cylinder) terminated by a semicircular (hemi-
spherical) end-cap. Cubic splines (with appropriate symmetry
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Figure 1: Geometry definition. Thex-axis is the plane or axis
of symmetry.

conditions) are used to represent the geometry and compute the
arclength,s, surface normaln(s) = (nx,ny), and curvature,κ(s).

Potential flow

In this paper, it is assumed that viscous effects are confined to
the boundary layer. Outside the boundary layer, the flow is ef-
fectively inviscid and described by a velocity potential satis-
fying the Laplace equation. The external velocity potential is
obtained using interior point (ring) sources [1] and is given by

φ(x,y) = U∞x+
N

∑
j=1

mj Φ(x, X̂j ,y,Ŷj ) (4)

whereU∞ is a uniform far-field velocity,N is the number of
point (ring) sources,mj and(X̂j ,Ŷj ) are the strength and coor-
dinates of thej-th source, respectively, and

Φ(x,x0,y,y0) = log[(x−x0)2 +(y−y0)2]1/2 (5)

+ log[(x−x0)2 +(y+y0)2]1/2 (6)

for plane-symmetric flow, or

Φ(x,x0,y,y0) =
K(k)

[(x−x0)2 +(y+y0)2]1/2
(7)

for axisymmetric flow. Here,K is the complete elliptic integral
of the first kind and

k2 =
4yy0

(x−x0)2 +(y+y0)2 . (8)

Applying the no-penetration boundary condition∇φ ·n atN dis-
crete points on the body surface yields the linear system

N

∑
j=1

[
nx(si)

∂Φ
∂x

(Xi , X̂j ,Yi ,Ŷj )+ny(si)
∂Φ
∂y

(Xi , X̂j ,Yi ,Ŷj )
]

mj

=−U∞ nx(si), i = 1, . . . ,N, (9)

where X(si) = (Xi ,Yi) is the i-th node. The point (ring)
source locations are given bŷXj = Xj − γ∆snx(sj ) and Ŷj =
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Figure 2: Surface velocity error for spheroids of aspect ratio 4
(open symbols) and 2 (closed symbols).

max[0,Yj −γ∆sny(sj )], where∆s is the local node spacing andγ
is a parameter measuring the source’s distance inside the bound-
ary relative to∆s.

Figure 2 shows the surface velocity error for prolate spheroids
of aspect ratio 2 and 4. The optimal value ofγ depends on both
the grid spacing,∆s, and the maximum curvature,κmax. When
γ∆sκmax . 1, that is, when the radius of curvature is similar in
magnitude to the offset distance of the ring sources, the error is
large, independent ofγ. For prolate spheroids and ellipses, the
maximum curvature occurs at the nose and, in this implementa-
tion, some of the point or ring sources are forced onto the plane
or axis of symmetry. More generally, it is reasonable to expect
that the point/ring source techniques will experience difficulty
whenever the radius of curvature becomes small in comparison
to the offset distance of the sources.

Boundary-layer flow

Using the G̈ortler and (in the case of axisymmetric flow) Man-
gler transformations, the boundary-layer equations [5] reduce
to

fηηη + f fηη +β(ξ)(1− f 2
η) = 2ξ( fη fξη− fξ fηη) (10)

where

η =
U(s)
ν
√

2ξ
n, ψ(s,n) = ν

√
2ξ f (ξ,η), (11)

(s,n) are coordinates parallel and normal to the surface, respec-
tively, ψ(s,n) is the streamfunction,U(s) is the local surface
velocity obtained from the potential solution,ν is the kinematic
viscosity, and subscripts onf denote differentation. For plane-
symmetric flows,

ξ =
1
ν

Z s

0
U(s)ds and β(ξ) = 2ν

U ′(s)
U2(s)

ξ. (12)

For axisymmetric flows, the Mangler transformation is also ap-
plied, giving

ξ =
1
ν

Z s

0
U(s)Y2(s)ds and β(ξ) = 2ν

U ′(s)Y2(s)
U2(s)

ξ. (13)

Equation (10) is subject to the boundary conditions

f (0) = 0, fη(0) = 0, and fη(∞) = 1, (14)

Plane-symmetric Axisymmetric
η− f (η) fηη(0) η− f (η) fηη(0)

Box method 0.6480 1.2328 0.8046 0.9278
Schlichting [5] 0.6480 1.2326 0.8047 0.9277

Table 1: Boundary-layer solver validation for self-similar stag-
nation point flow. Note thatη− f (η) should be evaluated in the
limit η → ∞, but is here evaluated atη = 5.

and solved using the Keller Box method [5]. Second-order ac-
curate finite difference and interpolation schemes are used to
discretize (10) and a Newton method is used to solve the result-
ing nonlinear difference equations at each streamwise station.
Adaptive Romberg integration is used to evaluate the integrals
in (12) and (13). Second order finite differences are used to
evaluateU ′(s) = dU/ds. The far-field boundary condition is ap-
plied atη = 5. Consideration of plane-symmetric and axisym-
metric stagnation point flow yieldsβ(0) = 1 andβ(0) = 1/2,
respectively.

Table 1 compares published results for self-similar stagnation
point flow with those calculated using the Box Scheme solver
with 100 nodes. This is not a complete check of the solver
because the right-hand-side of (10) vanishes for self-similar
boundary-layer flows. For plane-symmetric flow past a circu-
lar cylinder, the combined potential and boundary-layer solvers
predict a separation angle of 104.3◦, compared with a published
value 104.5◦ [5]. For axisymmetric flow past a sphere, the com-
bined potential and boundary-layer solvers predict a separation
angle of 104.6◦, compared with published values in the range
103.6–109.6◦[6]. These values are obtained using 100 nodes
in both the circumferential and wall-normal directions and first-
order interpolation between circumferential grid points.

Optimization

A discrete optimization problem is obtained by defining a dis-
crete design or control vector,x, whose components determine
the forebody node positions according to

X(si) = xin0(si)+X0(si), i = 1, . . . ,M, (15)

wherexi is the i-th component ofx, n0 andX0 are the normal
and position vectors of a reference (initial) geometry, andM is
the number of nodes on the forebody. Note that the objective
function is still linear with respect tox. The discrete constraints
are

gi(x) =−τ(si)≤ 0 (16)

gi+M(x) =−Xs(si)≤ 0 (17)

wherei = 1, . . . ,M. Although there are 2M constraints, only a
maximum ofM can be active.

Using the boundary-layer solver described above, it is not pos-
sible to continue solutions downstream of the separation point
due to the presence of the Goldstein singularity. It is there-
fore necessary to use an optimization algorithm that generates
shape iterates that are always feasible, that is, unseparated. We
use the Feasible Direction Interior Point (FDIP) method [2, 3].
With the above definitions, application of the algorithm to the
present problem is straightforward.

The FDIP method is a gradient-based algorithm. For our prob-
lem, the objective function is linear, so analytical computa-
tion of ∇ f (x) is trivial. Finite differences are used to compute
∇gi(x). Although expensive, this is satisfactory for sufficiently
small problems, such as those presented in this paper. The La-
grangian Hessian is set to the identity matrix, resulting in a first-
order method. A smoothing operator is applied to updates to
help preserve shape regularity [4].
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Figure 3: Initial and optimized forebody after 30 iterations for
plane-symmetric flow.
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Figure 4: Initial and optimized forebody after 30 iterations for
axisymmetric flow.

Results

Figures 3 and 4 show the initial and optimized shapes for plane-
symmetric and axisymmetric flow, respectively. In each case,
the initial forebody geometry is specified as the lowest order
Chebyshev polynomials that satisfyY(0) = 0, Y(s0) = D/2,
Ys(s0) = 0, Yss(s0) = 0 and X(0) = −Linit , Xs(0) = 0, and
X(s0) = 0. Linit is chosen sufficiently large to obtain a feasible
initial geometry. The results are obtained withγ = 3, N = 800,
M = 240,LA/D = 8.56 for the plane-symmetric case andγ = 3,
N = 400,M = 100, andLA/D = 3.38 for the axisymmetric case.
Calculations are terminated when progress stalls, or when the
curvature and shear stress profiles develop significant grid-scale
oscillations. These features are rejected because they are not re-
tained upon grid refinement.

Figures 5 and 6 show the pressure coefficient,

cp ≡
p− p∞
1
2ρU2

∞
= 1−

(
U
U∞

)2

, (18)
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Figure 5: Pressure coefficient, shear stress, and curvature af-
ter 30 iterations in the plane-symmetric case. The junction is
located ats0/D = 2.84. The shaded area indicates separated
(infeasible) solutions.

fηη evaluated at the wall (η = 0), and the curvature for the
plane-symmetric and axisymmetric case, respectively. Note that
at any streamwise station,fηη(0) is proportional to the wall
shear stress,τ, and is a convenient nondimensional substitute.
The maximum curvature, maximum shear stress, and minimum
pressure coefficient are clearly correlated. The optimization al-
gorithm drives the geometry towards an almost discontinuous
curvature variation. This causes curvature overshoots, as the
splines struggle to resolve such features. The optimal geometry
consists of an essentially flat-plate stagnation-point flow with a
favourable pressure gradient up to the point of maximum cur-
vature. Between this point and the junction with the aftbody, an
approximately zero shear-stress surface is obtained.

The effect of aftbody length,LA, is shown in Figure 7. Upstream
influence can only enter through the pressure coefficient. The
plane-symmetric case is more sensitive to aftbody length than
the axisymmetric case and there appears to be some residual
effect atLA/D = 5.39.

Discussion

The limitations of the flow solvers used in this paper are widely
understood. Potential flow and first-order boundary-layer the-
ory provide an accurate prediction when the Reynolds number
is large and large-scale separation and transition do not occur.
As the flow in the vicinity of the forebody is attached by design
and separation occurs far downstream, we expect the present
approximations to be qualitatively meaningful. Higher order ef-
fects, such as boundary-layer displacement effects, are ignored,
as are the effects of instability and transition to turbulence that
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Figure 6: Pressure coefficient, shear stress, and curvature after
30 iterations in the axisymmetric case. The junction is located
ats0/D = 1.39. The shaded area indicates separated (infeasible)
solutions.
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Figure 7: Effect of aftbody length on pressure coefficient pro-
files for plane-symmetric (solid line,LA/D = 5.39; dashed
line LA/D = 8.56) and axisymmetric (solid line,LA/D = 3.38;
dashed lineLA/D = 5.09) cases.

will occur at sufficiently large Reynolds number. The zero shear
stress surface is rather sensitive to perturbations in the geome-
try, suggesting that displacement effects may be important in a
physical flow. The adverse pressure gradient associated with the
zero shear stress surface implies the existence of an inflection
point in the boundary-layer velocity profiles, hence the bound-
ary layer will be particularly susceptible to instability. It is
likely the forebody geometry will need to be modified to take
these effects into account. This is the subject of future work.

Another important factor in the physical flow is sensitivity to
angle of incidence. The optimized forebody geometries exhibit
rather sharp corners. We expect that such features would pro-
mote separation in the presence of small angles of incidence.
This is also the subject of future work.

The optimizing algorithm can find solutions of the discrete
problem with lower values of the objective function than the
examples shown here. Approaching these solutions, the shapes
tend to lose regularity, with large oscillations in the curvature
causing similar oscillations in the streamwise shear stress pro-
files. As mentioned above, such solutions are rejected, but a
rational criterion for doing this has not been developed. As a
result, it is not possible to be certain how well-converged the
solutions are.

Conclusions

Classic flow solvers are combined with the FDIP optimization
algorithm to obtain minimum-length forebody geometries free
from separation. The optimal geometry consists of an essen-
tially flat plate normal to the flow, connected to the aftbody by a
smooth surface with almost zero shear stress. For the plane-
symmetric case, the minimum forebody aspect-ratio was ap-
proximately 2.5, compared with approximately 1.0 for the ax-
isymmetric case.
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