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Abstract 
The use of a Fickian (infinitesimal–mixing–length) framework 
for the case of turbulent mixing can necessitate the use of ad hoc 
modifications (e.g. β–factors) in order to reconcile experimental 
data with theoretical expectations.  This is because in many cases 
turbulent mixing occurs on scales which cannot be considered 
infinitesimal.  In response to this problem a Finite–Mixing–
Length (FML) model for turbulent mixing was derived by 
Nielsen and Teakle [10].  This paper considers the application of 
this model to the scenario of suspended sediment in steady, 
uniform channel flows.  It is shown that, unlike the Fickian 
framework, the FML model is capable of explaining why β–
factors are required to be an increasing function of ws/u*.  The 
FML model does not on its own explain observations of β < 1, 
seen in some flat–bed experiments.  However, some potential 
reasons for β < 1 are considered. 
 
Introduction 
Fickian (gradient) diffusion is the usual theoretical framework 
applied to modelling the turbulent suspension of sediment.  
However, measurements of actual suspended sediment profiles in 
the laboratory and in the field demonstrate that pure gradient 
diffusion models are not capable of satisfactorily performing this 
task.  In particular, a strong dependence of the observed Fickian 
sediment diffusivity, εFick, on sediment settling velocity, ws, has 
been clearly established by experiments covering a large range of 
flow situations from laboratory channels, to rivers and even to 
wave flumes and coastal locations involving oscillatory flows.  
This positive dependence, (↑ εFick for ↑ ws) implies that the larger, 
more inert particles are mixed more efficiently by the turbulence 
than their less heavy counterparts.  Coleman [3] obtained an 
experimental dataset that clearly demonstrated this phenomena, 
see figure 1.  This seemingly strange nature of apparent Fickian 
sediment diffusivities has typically necessitated the application of 
ad hoc modifications (β–factors) to this parameter for modelling 
purposes. 
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Figure 1.  Coleman’s [3] dataset clearly showing ↑ εFick for ↑ ws. 

 

β is defined as the ratio of the apparent Fickian diffusivity of 
sediment and of momentum (the eddy–viscosity, νt), 

Fick tβ ε ν= .  This parameter describes the relative turbulent 
mixing efficiency of momentum compared with sediment in the 
same flow.  β–factors greater than and less than 1 have been 
observed in turbulent channel and river flows.  However, a 
universally observed feature is the strong dependence in a given 
series of experiment of β on the ratio, ws/u*. 
 
Nielsen [9] explains that the observed behaviour is due to the 
importance of large–scale convective transport mechanisms in 
turbulent mixing.  However, the assumption implicit in the 
derivation of the gradient diffusion framework is that mixing 
occurs on purely infinitesimal scales.  Nielsen and Teakle [10] 
derived a new Finite–Mixing–Length (FML) framework for 
turbulent diffusion which is capable of explaining the observed 
trend of increasing εFick with increasing ws/u*.  However, some 
other features of the data such as β < 1 for flat–bed laboratory 
experiments could not be reconciled with the FML model alone.  
In order to investigate possible improvements to the model, some 
of the dynamic interactions that may occur between sediment and 
fluid are also qualitatively considered. 
 
Finite–Mixing–Length Model 
Nielsen & Teakle [10] consider in detail the derivation of the 
FML theory and its application to a number of simple situations.  
The following section will provide a brief summary of this work. 
Turbulent mixing is capable of generating a net vertical flux of 
suspended sediment which can be quantified in terms of the 
simplified scenario involving the swapping of fluid parcels 
(including suspended sediment) shown in figure 2. 
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Figure 2.  The upward sediment flux due to turbulent mixing can be 
understood in terms of swapping fluid-sediment-mix parcels over a 
vertical distance lm. 
 
The resulting sediment flux density is, 
 ( ) ( )2 2m m m mq w c z l c z l= − − +    (1) 



 

and by Taylor expansion of  ( )2mc z l± , 
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The term in front of the brackets is the familiar gradient diffusion 
flux.  The higher order terms disappear for the case of 
infinitesimal mixing length, lm→0, demonstrating that Fickian 
diffusion is only a particular limit of the more general turbulent 
mixing scenario.  It is the effect of the higher-order terms for 
cases of finite lm which can account for much of the previously 
irreconcilable behaviour of suspended sediment profiles in 
turbulent flows. 
 
Apparent Fickian Diffusivities 
The sediment continuity equation for a 1D vertical, steady 
scenario can be written, 
 ( ) 0m sq w c z− =  (3) 
If the gradient diffusion framework is adopted, the mixing flux is 
simply assumed to be, 

 m Fick
cq
z

ε ∂
= −

∂
 (4) 

Using Eqs. (2), (3) and (4) it can be seen that, according to the 
FML framework, the apparent Fickian diffusivity is, 
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Therefore, Fickε , is not purely a function of the turbulence 
parameters wm and lm, it is also dependent on the higher order 
terms in Eq. (5).  The nature of these higher order terms can be 
more clearly seen by considering an exponential concentration 
distribution, 
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Substituting this into Eq. (2) gives for the mixing flux, 
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From Eq. (7) it can be seen that the higher order terms are zero 
and the turbulent mixing process is correspondingly Fickian only 
for the limit of lm/Lc→0, i.e. when the turbulent mixing length is 
small compared with the distribution length–scale Lc.  Coarser 
particles (larger w0) are seen to have larger Fickε  than fine 
particles due to the fact that they have a relatively smaller Lc (and 
hence larger higher order terms according to Eq. (7)) in a given 
turbulent mixing regime. 
 
FML Concentration Distributions 
For a couple of simple turbulent mixing scenarios the FML 
model predicts concentration distributions that are analogous to 
the corresponding Fickian distributions: 
 
Homogeneous Turbulence; constant wm and lm 

In this case the concentration profile derived from the pure 
gradient diffusion theory (combining Eqs. (3) and (4)) gives an 
exponential distribution, Eq. (6), where the distribution length–
scale is given by, 
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The FML framework (combining Eqs. (1) and (3)) gives an 
analogous solution to (6), however in this case the distribution 
length–scale is, 
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Figure 3 illustrates this relationship and demonstrates that the 
Fickian approximation is exact for wm/ws→0, while it 
underestimates Lc for finite ws/wm.  Interestingly, van Rijn’s [12] 
empirical β–factor formula shows a similar dependence on ws/u* 
to Eq. (9), 
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Figure 3.  Solid line showing finite-mixing-length model exponential 
lengthscale, Lc , for homogeneous turbulence compared with the 
corresponding Fickian prediction (dotted line). 
 
Constant Stress Layer; linear lm(z) and constant wm 
This turbulence distribution is usually assumed to apply to the 
“constant–stress–layer” in wall–bounded shear flows, e.g. Pope 
[11].  In particular Nielsen and Teakle [10] made the general 
assumption that, 
 ( )ml z zλ= , and (11) 

 *mw uγ=  (12) 

where, * 0u τ ρ≡ is the bed, friction–velocity.  This is similar 
to Prandtl’s mixing–length hypothesis except that Prandtl made 
the further assumptions that γ = 1, λ = κ, and that the mixing 
process was Fickian in nature. 
 
Nielsen and Teakle [10] sought a unified and consistent turbulent 
mixing model for both momentum and sediment for the constant 
stress layer.  Firstly, considering the FML model (figure 2) 
applied to momentum transfer with mixing parameters given by 
Eqs. (11) and (12), they got, 
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This equation is found to satisfy the usual logarithmic velocity 
profile, 
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when λ and γ satisfy, 
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This equation approaches the Fickian limit λ γ → κ as λ→0.  
Physically λ = 2 is the upper limit in the mixing scenario of figure 
2. 
 
The sediment distribution obtained using the Fickian 
approximation is a power–function in the case of a constant–
stress–layer, 
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The FML model also yields a power–function for the sediment 
distribution, 
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where p satisfies, 
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The FML model approaches the Fickian distribution, 
( )*sp w uλγ= − , when ws/u*→0.  As λ→0 the homogeneous 

FML solution (figure 3) is approached.  The strength of the FML 
mixing enhancement is determined by the magnitude of the 
mixing length gradient, λ.  This raises the issue of how the model 
parameters λ and γ should be chosen.  In the Fickian mixing 
scenario wm and lm only ever appear in combination, i.e. wmlm, 
therefore in the Fickian model it does not matter how these terms 
proportionately contribute to the mixing.  However, in the FML 
model (Eq. (5)) the relative size of the mixing length is seen to 
determine the strength of the FML effects.  Therefore, in this case 
the model parameters will be chosen to best match the available 
constant–stress–layer data. 
 
Comparison With Experimental Data 
The most convenient way to compare the model with 
experimental data makes use of the β–factor, 
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For the constant–stress–layer case (log–function velocity and 
power–function sediment distribution) this gives, 
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The comparison of the FML model with data is shown in figure 
4, for three different choices of λ.  The data points were obtained 
by only considering the constant–stress–layer portion (z/h < 0.5) 
of the concentration profiles from channel and river flow 
experiments.  In order to maintain a consistent approach between 
datasets, some of which did not include detailed velocity 
measurements, it was assumed that κ (in effect the velocity 
gradient) maintained its clear–water value of 0.4 in all cases, 
even though this was demonstrated not to necessarily be the case 
where velocity measurements were available.  β is seen to be an 
increasing function of ws/u* in good qualitative agreement with 
the data.  The choice of larger values of λ produces a stronger 

increase with ws/u*.  The slope of the data suggests that λ =1.9 
best describes the increase of β with ws/u*.  This has an 
interesting physical interpretation when it is considered that as 
λ 2 the mixing scenario shown in figure 2 corresponds to 
mixing between an upper parcel and a lower parcel that always 
originates from the vicinity of the bed. 

0.1

1

10

0.01 0.1 1 10ws/u*

β
λ = 0.1

λ = 1

λ = 1.9

 
Figure 4  Lines showing theoretical β-values for the constant stress layer 
model.  Experimental β-values from the constant stress layer of channel 
flows; ♦ Graf & Cellino (no bedforms) [6], ● Graf & Cellino (bedforms) 
[2], ▲ Anderson (Enoree River) [1], x Coleman [3], � Coleman [4]. 
 
While the FML model predicts increasing β with increasing ws/u* 
in qualitative agreement with the data, the quantitative 
description shown in figure 4 is not yet convincing.  For instance 
the model predicts β ≥ 1 for all sediment sizes while some of the 
flat bed experiments indicate β < 1.  The fact that the data does 
not collapse when plotted in this manner also suggests that 
processes other than those considered in this analysis are most 
likely important.  Some of these additional processes are briefly 
considered in the next section. 
 
Dynamic Interaction of Fluid and Sediment 
The constant–stress–layer analysis shown in the previous section 
was based on the assumption that suspended sediment is a 
passive scalar in a turbulent flow.  However this is not usually the 
case, the presence of suspended sediment is known to change the 
suspending fluids mean velocity and turbulence profiles from the 
clear water equivalent.  Furthermore, the presence of turbulence 
may significantly affect the velocity statistics of the suspended 
sediment due to a process called “selective sampling”.  This can 
lead to the bulk settling velocity of the sediment in turbulence 
being different from its clear water value, as well as the turbulent 
fluctuations of the sediment being different from that of the 
suspending fluid. 
 
Effect of Suspended Sediment on Fluid Velocity 
The addition of a suspended load of heavy particles to a steady, 
uniform, clear–water, channel flow has been shown to increase 
the near–bed velocity gradient.  This is usually explained by 
turbulence attenuation resulting from the stable stratification 
induced by the sediment concentration gradients, [7].  This effect 
implies that the presence of sediment causes momentum to be 
less efficiently mixed, which should be accounted for in the 
calculation of β (Eq. (19)).  In order to investigate the importance 
of this stratification effect the dataset of Coleman [4] was 
considered.  Both velocity and sediment concentration 
measurements were obtained as sediment load was gradually 
increased in a series of experiments.  In order to simply 
demonstrate any first–order effects, the following analysis 



 

assumes that a log–law velocity and power–law concentration 
profile remain valid.  Figure 5a shows how the apparent von 
Karman constant, κ’, varied with suspended sediment 
concentration (simply a convenient abscissae).  Figure 5b 
compares β obtained assuming κ = 0.4 with that obtained 
allowing for variation, β’.  This shows that, in the case of 
Coleman’s data, β < 1 in the original analysis can be accounted 
for by the reduction in velocity gradient.  Unfortunately the same 
explanation does not seem to account for β < 1 in Graf and 
Cellino’s [6] data. 
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Figure 5a  Showing the variation in κ’ with increasing sediment load. 
Data from Coleman (1986) [4].  ws/u* = 0.2;  ws/u* = 0.6; ▲ ws/u* = 
1.5.  5b  Comparing β (hollow symbols) and β’ (solid symbols).  Symbols 
as for 5a. 
 
Sediment Velocity 
Most models of suspended sediment and many experiments have 
assumed that the sediment and fluid have essentially identical 
velocity statistics.  However, an interesting experiment by Muste 
and Patel [8] used a discriminator LDV to measure separate fluid 
and suspended sediment velocities in dilute sediment–laden flow.  
Their results suggest that there is a lag between fluid and 
sediment mean stream–wise velocities of up to 4%.  Their most 
intriguing finding was that stream–wise turbulence intensities of 
water and sand were very similar, whereas the vertical sediment 
turbulence intensities were significantly damped compared with 
the fluid (by approximately 20%).  In the context of the FML 
model this could be interpreted as a reduction of the sediment 
mixing velocity, wm, compared with that of the fluid.  This would 
lead to β < 1 for small ws/u*.. 
 
This phenomenon could perhaps be explained by the particles 
“selectively–sampling” the turbulent fluid velocity field.  That is, 
in a fluid velocity field comprising spatially and temporally 
coherent turbulent structures, suspended particles with inertia 
differing from that of a fluid particle have been shown to 
preferentially migrate due to centrifugal action to certain regions 
of the flow field [5].  This “preferential concentration” implies 
that the suspended particles are “selectively sampling” the fluid 
velocity field and therefore different velocity statistics between 
the fluid and sediment become possible. 
 

Selective sampling has been shown to change the bulk settling 
velocity of particles in turbulence from its clear water value.  For 
heavy particles in a strong turbulence field this is expected to 
result in an increase in bulk settling velocity [13].  This increase 
in settling velocity due to turbulence would have the same effect 
on the concentration profiles as a reduction in mixing efficiency 
and thus would manifest itself as β < 1. 
 
Conclusions 
This paper has demonstrated the application of a Finite–Mixing–
Length (FML) theory to the case of sediment suspensions in 
steady, uniform flows.  Unlike the Fickian diffusion framework 
the FML theory is capable of explaining why β–factors are 
required to be an increasing function of ws/u*.  A unified FML 
description of momentum and sediment mixing in a “constant–
stress–layer” was shown to adequately describe the observed 
trend in the data. 
 
The large scatter in the data for small ws/u* and the occurrence of 
β < 1 was considered in some further detail.  The dynamic 
interaction of fluid and suspended sediment was shown to 
significantly alter both the momentum and sediment mixing 
efficiencies.  The potential importance of a “selective–sampling” 
mechanism was also postulated. 
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