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Abstract  
The Steady laminar axial flow of an incompressible and non-
Newtonian fluid inside concentric annular spaces is analyzed. The 
material is supposed to behave as a generalized Newtonian liquid 
with Robertson-stiff stress-strain relation. Fluid flow is produced 
by the inner cylinder axial motion and an imposed pressure 
gradient in the axial direction. Both cases of positive and negative 
pressure gradient i.e. it assist or oppose the drag on the fluid due to 
the moving cylinder are studied. Four possible cases with respect to 
positions of the plug flow regions are considered. Heat transfer in 
axial flow of this viscosity function is investigated for uniform wall 
temperature at inner cylinder and adiabatic condition for outer 
cylinder. The governing momentum and energy equations have 
been solved iteratively by using a finite difference method. 
Velocity distribution, temperature profiles and Nusslet number 
have been obtained and compared for different values of yield 
stress, flow index and radius ratio in all cases mentioned above. 
 
Keyword: Heat transfer, Axial flow, concentric annuli, non-
Newtonian, Robertson-Stiff materials, Numerical simulation 
 
Introduction 
Many of the fluids used in industrial purposes are non-Newtonian 
and flow and heat transfer of such fluids in annuli spaces accounts 
for a significant part of the flow. Non-Newtonian fluids (i.e. fluid 
which don't obey Newtonian's law of viscosity and have an 
effective viscosity which is a function the shear rate) appear in 
many important applications and different industries including the 
food, sewage, pharmaceutical industries, polymer industries, 
cosmetics and lubricants, drilling process of oil wells and extrusion 
of ceramic catalyst supports. Waxy crude in the oil industry can 
also form non-Newtonian gels if allowed to cool below their gel-
points. In all above processes and applications, the fluids, either 
synthetic or natural, are mixtures of different stuffs such as water, 
particles, oils and other long chain molecules; this combination 
imparts strong non-Newtonian characteristics to the resulting 
liquids: the viscosity function varies non-linearly with the shear 
rate. The fluid flows and heat-transfer behavior of non-Newtonian 
viscoelastic fluids has attracted special interest in recent years due 
to the wide application of these fluids in above processes. In these 
processes, heat transfer information is sometimes needed to predict 
temperature levels or heat transfer rate to be controlled to cause a 
desired rheology of the flowing material. 
When one deals with a practical engineering problem consisting of 
a non-Newtonian fluid, it is not easy to estimate the heat transfer 
even in a simple geometry. The reason is that the viscosity of non-
Newtonian liquids varies with both shear rate and temperature, a 
phenomenon which significantly influences the velocity and 
temperature profiles. Numerous articles about flow and heat 
transfer of non-Newtonian fluids can be found in the literature. 
T. Shigechi et al. investigated the laminar forced convection of 
Newtonian fluids in concentric annuli with axially moving cores for 
both thermal entrance and fully developed regions, neglecting the 
effect of viscous dissipation on heat transfer. The moving wall of 
the inner cylinder deforms the fluid velocity profile near the wall 
region, resulting changes in velocity gradient there. Thus, viscous 

dissipation may not be neglected in heat transfer involving moving 
boundaries. Manglik and Fang investigated numerically heat 
transfer to a power-law fluid through annuli. They found that the 
power-law index dose not change significantly the Nusselt number 
for concentric annular spaces [1]. Round and Yu analyzed the 
effects of reological parameters on velocity and pressure profiles of 
Herschel-bulkley fluids through concentric annuli. 
Soares et al. (1999) studied the developing flow of Herschel-
bulkley materials inside tubes for constant and temperature-
dependent properties, taking axial diffusion into account. They 
observed that the temperature-dependent properties do not affect 
qualitatively pressure drop or the Nusselt number [3]. 
Soares et al. (2003) investigated the heat transfer in the entrance-
region laminar axial flow of viscoplastic materials inside annulus. 
It is shown that the entrance length decreases as the material 
behavior departs from Newtonian. Also they observed that the 
effect of rheological parameters on the inner-wall Nusselt number 
is rather small [4]. 
Nascimento et al. analyzed the developing flow of Bingham fluids 
through concentric annuli. They resulted that the Nusselt number 
increases with the dimensionless yield stress along thermal entry 
region, but is nearly insensitive to it at the fully developed region. 
Robertson-stiff fluids are non-Newtonian materials possessing a 
yield value. They are the combination of a Bingham plastic fluid 
and a pseudoplastic power-law fluid [5]. 
The constitutive equation for these fluids is as follows: 

                                                                        
 

         (1) 
 
 
 It may be represented in below form.  

                                                                                         
                  (2) 

                      
Where τ is shear stress, το is a yield stress, γ is the shear rate of 
strain, n is the flow behavior index, K and C are consistency and 
material constant respectively. 
E. Santoyo et al. (2003) analyzed the Rheological behavior typified 
by Robertson-stiff model using the experimental rheometric data of 
some maize flour pastes. Figure 1 shows a schematic diagram of 
this model.[2] 
In this paper, we are concerned with the flow and heat transfer of 
Robertson-stiff model in the annular space between two concentric 
cylinders where the inner cylinder is in axial motion and the outer 
cylinder is at rest. As a first approximation, rheological parameters 
in Equation 1 are assumed to be independent of temperature. Using 
a finite difference method, the momentum and energy equations 
have been solved numerically for a third kind of thermal boundary 
condition i.e. uniform temperature at inner cylinder; The outer 
cylinder is assumed to be perfectly insulated (adiabatic). Velocity 
distribution, temperature profiles and Nusslet number have been 
obtained and compared for different values of yield stress, flow 
index and radius ratio in some different cases of flow. 
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Figure 1: Rheological behavior of DPMF-13 by Robertson-stiff model [2]. 

 
Formulation and Mathematical Analysis of the Problem 
A Robertson-stiff fluid confined to the space between two coaxial 
cylinder surfaces. The outer and inner radiuses of the concentric are 
R and kR, respectively. The outer cylinder is stationary while the 
cylinder with radius kR moves with a constant axial velocity U in 
the positive z direction. There is pressure gradient in the z direction, 
with pressure gradient being P0 and PL ate z =0 and z =L 
respectively. The flow is supposed to be steady, laminar, 
incompressible and with constant pressure gradient. Local velocity 
is denoted by Vz and depends solely to radial distance 'r'.  
We consider the rheological equation of state for Robertson-stiff 
model in cylindrical coordinate as in equation 1.                                                                      
With considering the dimensionless radius and velocity, equation 1 
may be simplified and rewritten in the following dimensionless 
form: 
 

                                                          (3) 
                                         

                    
(4)        

            
Under the above assumptions, the momentum equations in the 
tangential and axial directions with negligible end effects of the 
cylinders in the cylindrical coordinate system with the origin at the 
center of the cross section of the annulus are given by 

 
 (5)                                                                         

          
This equation after simplification to dimensionless state and 
integration yields the shear-stress distribution as below. 
                                                                                                                                          

                   (3) 
 
 and boundary conditions are 
         
                                  
λ2 in equation 6 is a dimensionless constant of integration. If λ is 
real (λ2>0), then λ corresponds mathematically to a dimensionless 
zero-shear radius. Equations 4 and 6 are combined and rewritten as 

        
                       

(7) 
 

This equation will be different based on pressure or velocity 
gradient sign. Some of these different cases will be presented and 
discussed as follow. 
 
Pressure gradient assists the drag on the fluid (∆P>0)  
λo , λi are the dimensionless boundary values of the plug flow 
region. ϕo, ϕP, ϕi are the dimensionless velocity at 1) region 
between plug flow and inner cylinder, k≤ ζ<λi , 2) plug flow 
region , λi ≤ ζ≤ λo, 3) region between outer cylinder and plug 
flow, λo < ζ≤ 1, respectively.  
At this condition (∆P>0) and for above regions equation 7 will be 
converted as below: 
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Here, Λ and C' are denoted as 
                                                                                

         (11) 
 

Pressure gradient opposes the drag on the fluid (∆P<0)  
Pressure gradient is negative i.e. P0 < PL and it is caused the fluid 
flow in opposite direction of inner cylinder axial moving. At this 
condition and for three regions Equation 7 will be as 

 
 
           (12) 
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Finally with considering of above results and equations for 
different cases, the following general equations are resulted. 

 
 
 
(15)        

         
 
(16) 

 
Four different cases of velocity distributions between two coaxial 
cylinders have be studied and mathematically formulated.                          

                  
Velocity profile with maximum  
In this case where there is maximum in the velocity distribution 
between two cylindrical surfaces for determination of λo we 
consider the following conditions. 
∆P>0 ,  ϕi(κ) = 1,  ϕo (1) = 0          ϕi( λi ) = ϕo( λo )                                 
 
 

 (17) 
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Equations 17, 18 are combined and rewritten as below: 

 
   
             
    
(19) 
 
 
 

Equation 19 is used for calculating of λo in case of maximum 
velocity profile, but it has limitation at λi = k. therefore Λcritical is 
calculated by the following equation and Λ > Λcr1: 

 
                                             

(20)  
 
 
 
 

Velocity Profile with Plug Flow on Inner Cylinder  
In this case plug flow is attached to inner cylinder and for 
determination of λo we consider the following conditions. 

 
                                           

              
 
(21) 
     
 
 
 

 Equation 21 has limitation at λo = k. therefore Λcr2 is calculated at 
λo = k by the relevant equation, in common way as previous in 
equation 20 and  
 
Velocity Profile with Minimum  
For this case where there is minimum in the velocity distribution, 
for determination of λo we consider the following conditions. 
∆P<0 ,  ϕi(κ) = 1,  ϕo (1) = 0          ϕi( λi ) = ϕo( λo ) 

 
 
 

(22) 
 
 
 
         
 

Equation 22 has limitation at λo = 1 and Λ > Λcr11 . 
 
Velocity Profile with Plug Flow on Outer Cylinder 
Plug flow is attached to outer cylinder and for determination of λi  , 
the following equation is resulted as previous. 

                                     

          
 
                
                       

(23)                       
 
 

The above equation has limitation at λi = 1.  In above four cases 
after calculating of λi or λo , another parameter will be obtained by      
λ2

 =  λi x λo. By using of finite difference method, the momentum 
equations have been solved numerically at these four cases. 

Temperature Profile in Concentric Annuli 
The energy equation neglecting the viscous and work terms is 
given as 

 
                                       (24) 
 
 

The following dimensionless variables are introduced:  

 
  
   
                                                                    
 
and finally dimensionless form of energy equation is  
                                                        

                 (25)   
 
 
Here, V is mean velocity and energy equation has been numerically 
solved, simultaneously with momentum equations, in order to 
obtain temperature profiles for various flow regimes.  
 
Nu number 

    
                                                   
      ,                         

                     
 

 
 

      (26) 
 
In above equations, τ c, γ c, ηc and θm are characteristic shear 
stress, shear rate, viscosity and bulk temperature respectively. 
 
f Re for checking the accuracy of numerical results 
The product between the friction factor and reynolds number is:  

 ,   
k1
k

i0 RR
s +

τ+τ
=τ  

 
fRe is always equal to 64 regardless the rheological behavior and 
the duct geometry ( fRe=64 ). This matter is used during selecting 
stage of an appropriate mesh while obtaining numerical solution. 
The numerical solution was also compared with some axial flows 
of non-Newtonian materials. The velocity, temperature and Nu 
profiles obtained numerically were as it is expected theoretically 
and in agreement with exact / numerical solution of Herschel-
Bulkley material with considering of different rheological 
parameters [3,4]. Our velocity trend was similar in comparison to 
maximum velocity of Robertson-stiff fluid in annular duct obtained 
by I. Machac et al. (2003) [7]. 
 
Results and Discussion 
Dimensionless velocity & temperature profiles and results for some 
governing parameters are presented and discussed. 
Velocity distribution:   
Typical dimensionless axial velocity distributions for fully 
developed region are shown in Figures 2, 3, 4. As shown in Figure 
3, lower flow indexes cause larger dimensionless velocities and 
wider plug flow region. Figure 4 shows the dimensionless velocity 
increases and plug flow region decreases with the increase in yield 
stress. Velocity and finally volumetric flow rate increases for larger 
pressure gradients and lower radius ratios, k, as expected.  
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Temperature profile: 
Dimensionless temperature profiles and Nusselt number variation 
for thermal boundary condition of uniform temperature at inner 
moving wall are presented. For different flow regime at ∆P>0, the 
dimensionless temperature always decreases with axial position 
(Figure 5), except for ∆P<0, which increase. It is observed that the 
dimension velocity is almost invariant with both yield stress and 
flow index, Figure 6. The Nusselt variation with different 
rheological parameters at maximum velocity profile has been 
studied. It is observed that the Nu is approximately unaffected by 
the yield stress, but in comparison of calculated data Nu increase 
with το . Figure 7 shows Nusselt number increases as flow index 
increases. It also increases with Peclet number. Finally, it is 
concluded that the influence of rheological parameters on nusselt 
number is rather small. 

Figure 2: Velocity Distribution with plug flow on inner cylinder (Eq.21). 

Figure 3: Velocity Distribution for different values of 'n' (Eq. 17,18,19). 

 
Figure 4: Velocity Distribution for different values of 'το' (Eq. 17,18,19). 
 
 
 
 
 

Figure 5: Temperature profile for different axial positions, for velocity 
distribution with maximum (∆P>0), (Eq. 17,18,19,25). 

Figure 6: Temperature profile for different values of 'το', (Eq. 17,18,19,25). 

Figure 7: Nusselt number variation for different values of 'n' (Eq. 17,18,19,25,26). 
 
References 
[1] Manglik, R., Fang, P., Thermal Processing of Various non-Newtonian 
Fluids in Annular Ducts, Int. J. Heat and Mass Transfer, 45, 2002, 803-815 
[2] Nunez-Santiago M.C., Santoyo E., Rheological evaluation of non-
Newtonian Mexican nixtamalised maize and dry processed masa flours, 
Journal of Food Engineering, 60, 2003, 55–66. 
[3] Soares, E.J., Naccache, M.F., Souza Mendes, P.R., Heat Transfer to 
viscoplastic liquids flowing laminarly in entrance region of tubes, Int. J. 
Heat and Fluid Flow, 20, 1999, 60-67. 
[4] Soares, E.J., Naccache, M.F., Souza Mendes, P.R., Heat Transfer to 
viscoplastic materials flowing axially through concentric annuli, Int. J. Heat 
and Fluid Flow, 24, 2003, 762-773. 
[5] Robertson, R.E. and Stiff, H.A., An improved rheological Model for 
Relating Shear Stress to Shear Rate in Drilling Fluids and Cement Slurries, 
Trans AIME, Soc. Pet. Eng. J., 261, 1976, 31-37. 
[6] Malik, R. and Uday V. Shenoy, Generalized Annular Couette Flow of a 
Power-law Fluid, Ind. Eng. Chem. Res., 30, 1991, 1950-1954. 

[7] Machac I., Dolecek P., Machacova L., Poiseuille Flow of Purely 
Viscous Non-Newtonian Fluids through Ducts of Non-Circular Cross 
Section, Chemical Engineering and Processing, 38, 1999, 143–148.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
-0.5

0

0.5

1

1.5

2

2.5

ξ

ϕ

= r / R

= 
V

z 
/ U

n=0.5

n=0.69
n=0.75

τ0=0.8
R=0.3
k=0.5
U=0.2

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ξ 

ϕ

= r / R

τ0=0.8
τ0=0.69

τ0=0.58

n=0.65
R=0.3
k=0.5
U=0.4

=V
z 

/ U

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ξ

θ

= r / R

το=0.8

το=0.6
το=.49

n =0.5
R =0.3 
k =0.5
U =0.4
Pe =5000
z = 0.9 L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Z' = Z / L

N
u

n=0.5

n=0.69
n=0.75

το =0.8 
R =0.3
k =0.5
U =0.2
Pe=5000 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

ξ

ϕ

 = r / R

= 
V

z 
/ U

το =0.8
n =0.5
R =0.3
k =0.5
U =0.3 


