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Abstract

A straight tube with a smooth axisymmetric constriction is an
idealised representation of a stenosed artery. We examine the
three-dimensional instability of steady flow plus an oscillatory
component in a tube with a smooth 75% stenosis using both
linear stability analysis and direct numerical simulation. These
flows become unstable through a subcritical period-doubling bi-
furcation involving alternating tilting of the vortex rings that are
ejected from the throat with each pulse. These tilted vortexrings
rapidly break down through a self-induction mechanism within
the confines of the tube. While the linear instability modes for
pulsatile flow have maximum energy well downstream of the
stenosis, we have established using direct numerical simulation
that breakdown can gradually propagate upstream until it occurs
within a few tube diameters of the constriction, in agreement
with previous experimental observations.

Introduction

Atherosclerosis, the formation of plaques within the arterial
wall, continues to be a major cause of death in the developed
world. The associated narrowing, or stenosis, of the arterycan
lead to potential significant restriction of blood flow to down-
stream vessels. Related to this condition is the potential of
plaque ruptures and thrombosis formation leading to particles
becoming lodged in smaller vessels possibly inducing myocar-
dinal infarction or stroke.

This association of arterial disease with flow related mecha-
nisms, such as wall shear stress variation, has motivated the
study of steady and pulsatile flow within both idealised axisym-
metric and anatomically correct arterial model stenoses [4]. Un-
der standard physiological flow conditions most arterial flows
are usually considered to be laminar, although typically sepa-
rated and unsteady. However in the case of a stenotic flow the
increase in local Reynolds number at a contraction can lead to
transitional flow associated with the early stages of turbulence.
The occurrence of turbulence-like flow phenomena makes the
numerical simulation of these flows particularly challenging es-
pecially when considering the large range of parameters re-
quired to describe both the geometrical and flow features.

In the current work, we turn our attention to the stability of
pulsatile flows in an axisymmetric stenotic tube. The approach
adopted is to analyse the global linear stability of the axisym-
metric flows to arbitrary three-dimensional perturbations. As
the problem has rotational symmetry about the cylindrical axis,
it is natural to use Fourier decomposition in the azimuth direc-
tion in order to break the general three-dimensional linearsta-
bility problem into a set of two-dimensional ones, dramatically
reducing the size of each individual problem. Once we have the
most unstable mode, we then use full three-dimensional direct
numerical simulation (DNS) in order to examine the evolution
of their instability modes, onset of turbulence, and nonlinear
dynamics.
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Figure 1: Geometrical parameters that define the axisymmetric
sinusoidal stenosis.

Parameter Space

We will take our length scaleD as the tube diameter and base the
Reynolds number on the temporally and spatially averaged in-
flow velocity ū. The axisymmetric stenosis shown in figure 1 is
described by a sinusoidal shape which can be described by two
geometric parameters: the stenosis degreeS= 1− (Dmin/D)2

and the stenosis lengthλ = L/D. We have considered the ge-
ometry defined byS= 0.75 andλ = 2.

To complement the geometric factors we also need to consider
the physiological flow parameters. If we permit the inflow to
have a pulsatile waveform of periodT and restrict attention to
cases of non-reversing, spatially averaged flow we can identify
three important flow parameters: the Reynolds number,Re; the
Womersley number,α = (D2π/(2νT))1/2 and the peak to mean
flow ratioUpm= Qpeak/Qmean, whereQ is the volume flux. The
Womersley number can be interpreted as the ratio of the diam-
eter (or radius) to the viscous boundary layer growth in time
periodT which is the ratio of two sectional length scales. An
alternative parameter commonly used in fluid mechanics is the
reduced velocityUred = ūT/D which is the ratio of the convec-
tive length the mean flow moves in timeT to the diameter. For
geometries where there is a length scale in the flow direction, as
is the case of the stenosis, this non-dimensional parametercan
prove to be a useful alternative to the Womersley number. We
note thatUred and α are dependent parameters related by the
Reynolds number according toUred = πRe/(2α2).

Governing Equations

We consider the flow to be governed by the incompressible
Newtonian Navier–Stokes equations

∂tu = −A(u)−∇P+ν∇2u, with ∇ ·u = 0, (1)

whereu = u(z, r,θ,t) = (u,v,w)(t) is the velocity field,A(u)
represents nonlinear advection terms,P = p/ρ, and wherep
is the pressure,ρ and ν are respectively the fluid density and
ν kinematic viscosity. The variablesz, r, θ and t are respec-
tively the axial, radial, azimuthal and time coordinates and u,
v, w the velocity components in the axial, radial and azimuthal
directions. We can consider the nonlinear terms either in con-
vective formA(u) = u ·∇u, conservative formA(u) = ∇ ·uu,
or skew-symmetric formA(u) = (u ·∇u+∇ ·uu)/2, which are
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Figure 2: Spectral element outlines of computational mesh,dimensions given in terms of tube diameterD. Panel (a) shows elements
for the first mesh with an outflow at 45D. Panel (b) shows a close-up of the throat, with curved element edges.

all equivalent in a continuum setting. Equation (1) is subject to
no-slip boundary conditions at the walls, a prescribed velocity
at the inflow (steady or periodic), conditions of zero pressure
and zero outward normal derivatives of velocity at the outflow
and consistent regularity boundary conditions at the axis as ex-
plained in [7].

Taking the pressure to represent the solution of a Poisson equa-
tion that has the divergence of the advection terms as forcing,
we can consider the Navier–Stokes equations in symbolic form
as

∂tu = −(I−∇∇−2∇·)A(u)+ν∇2u = N(u)+L(u) (2)

where the nonlinear operatorN contains contributions from
both pressure and advection terms, while the linear operator L
corresponds to viscous diffusion.

When analysing the linear stability of a flow in terms of its nor-
mal modes, we decompose the velocityu into a base flowU and
perturbation flowu′: u = U + u′, and examine the stability of
the perturbation linearised about the base flow. In this decom-
position, the original nonlinear advection terms are replaced
with their linearised equivalent (here for the convective form)
∂UA(u′) = U ·∇u′ +u′·∇U and in symbolic form we write

∂tu′ = ∂UN(u′)+L(u′) (3)

for the evolution of the linear perturbation. If the base flowis
T-periodic in time,∂UN is linear time-periodic, and

u′(t0 +T) = exp

[
Z t0+T

t0
(∂UN+L)dt

]
u′(t0). (4)

The eigenpairs of this Floquet problem are{µ, ũ(t0)} where
µ is a Floquet multiplier and̃u(t0) is the T-periodic Floquet
eigenfunction, evaluated at phaset0. The equivalent to the
eigenvaluesγ of the time-invariant case are the Floquet expo-
nentsσ, related to the multipliers byµ = expσT. In general,
the Floquet multipliers/exponents and eigenfunctions occur in
complex-conjugate pairs.

Since the geometry is axisymmetric, the velocity must be 2π-
periodic inθ and can be projected exactly onto a set of two-di-
mensional complex Fourier modes by

ûk(z, r,t) =
1

2π

Z 2π

0
u(z, r,θ,t)exp(−ikθ)dθ (5)

wherek is an integer wavenumber. The Fourier-transformed
equations of motion and axial boundary conditions for the ve-
locity and pressure (and their perturbations) in cylindrical co-
ordinates are described in detail in [5, 7]. Our base flows are

both axisymmetric/two-dimensional, i.e.̂Uk = 0, k 6= 0, and
two-component, i.e.U ≡ (U,V,0). In the numerical stability
analysis we take advantage of linearity, which decouples the
stability problem for eacĥu′

k.

Numerical Methods

For time evolution of both the full and linearised Navier–
Stokes equations, we relied on standard (nodal-Gauss–Lobatto–
Legendre) spectral elements in (z, r) and Fourier expansions if
required in the azimuthalθ-direction. This spatial discretisation
was coupled with a second-order-time velocity correction time-
integration scheme. The development of this numerical method
for DNS has been described in detail in [7]. The application
of the method to linearised Navier–Stokes evolution, including
appropriate boundary conditions, has also previously beende-
scribed in [5].

The computational mesh used in the calculations is shown in
figure 2. The domain consists of 743 elemental regions. In each
element, two-dimensional mapped tensor-product Lagrange-
interpolant shape functions based on the Gauss–Lobatto–
Legendre nodes were applied. AtP = 7 this elemental dis-
cretisation corresponds to approximately 38 000 local degrees
of freedom in each meridional semiplane. The domain extended
5D upstream and 45D downstream of the throat. As shown in
figure 2 (b) a fine radial mesh spacing was adopted in the region
of the stenosis where two layers each of 5% of the local radius
were applied. Atz/D ≈ 7 the radial mesh spacing was coars-
ened to allow a uniform axial spacing of 0.5D to be applied to
the outflow. The mesh was refined until both the axisymmetric
base flows and Floquet multipliers converged to four significant
figures. Typically this also gives enough mesh refinement in the
meridional semi-plane for non-axisymmetric DNS as well, with
the number of planes of data in azimuth selected to provide a
three-order or better reduction in kinetic energy from azimuthal
mode 1 to the highest mode.

The numerical methods employed for stability analysis of both
steady and pulsatile flow follow those outlined in [10], and pre-
viously described and used in other works [3, 5, 6]. The analy-
sis is based on a Krylov-subspace iteration of successive finite
increments of (initially random) perturbations through the op-
erator of (4) using an Arnoldi method to extract the dominant
eigenpairs of the exponential operators in the equations. The
data used to supply theT-periodic base flow are approximated
through Fourier-series reconstruction from a limited number
(typically 256) of time-slices obtained from two-dimensional
DNS.
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Figure 3: The base flow and the leading eigenmode for one phasein the flow cycle for the unstable pulsatile flow atRe= 400,Ured = 2.5,
on a vertical centreplane. Panels (a, c) show contours of axial velocity of the base flow, while (b, d) show contours of axial velocity of
the eigenmode.

Figure 4: Growth to saturation of the pulsatile inlet flow solu-
tion atUred = 2.5, Re= 400, approximately 3% aboveRec, rep-
resented by kinetic energies in azimuthal Fourier modes, with
Nk = 16. An initial exponential growth phase (indicated by the
dotted line) is followed by faster than exponential growth near
t/T ∼ 35, an initial nonlinear saturation att/T ≈ 40, then a final
slow growth to an asymptotic state, reached att/T ∼ 250.

Results

Floquet analysis was carried out atUpm = 1.75 and for three
values of reduced velocity:Ured = 2.5, 5, and 7.5, i.e. succes-
sively longer dimensionless base flow periods. The correspond-
ing critical Reynolds numbers were found to beRec = 389,
417 and 500. In all three cases, the instability arose through
a period-doubling bifurcation in thek = 1 azimuthal Fourier
mode. The shape and location of the Floquet instability mode
for Ured = 2.5, Re= 400 is shown in figure 3, where it is com-
pared to the base flow at the same instant in time. The alternat-
ing sign of the Floquet mode growing on successive base flow
pulses for a streamwise traverse at any fixed radius is related to
the period-doubling nature of the instability. The perturbation
exerts alternating tilting moments on the vortex rings associated
with each pulse of the base flow.

Following the stability analysis, full three-dimensionalDNS of
the instability atUred = 2.5, Re= 400 was initiated by per-
turbing the base flow with a small amount of the leading Flo-

quet eigenmode and evolving in time. The time-evolution of
energies in the azimuthal modes is shown in figure 4. After a
brief equilibration, there is an exponential growth phase in the
non-axisymmetric components, lasting untilt/T ≈ 35, follow-
ing which the perturbation grows faster than exponentiallywith
time before an initial saturation att/T ≈ 40, signalling that the
bifurcation is subcritical. Then there is an extended slow change
until an asymptotic state is approached att/T ∼ 250.

The evolution of the flow through time is illustrated by the in-
stantaneous isosurfaces shown in figure 5. The first set of pan-
els, in figure 5 (a), shows the flow state after the initial satura-
tion att/T = 40. In the side view, the tilting of the third vortex
ring in the view can be seen, while the fourth and fifth rings in
the view are further advanced in their breakdowns to a packetof
Λ-vortices. In figure 5 (b) we see two instances in time leading
to the asymptotic state: the slow final growth seen in figure 4 is
associated with an upstream movement of the vortex ring break-
down. Att/T = 280, the flow still has the symmetry of the Flo-
quet mode, but at that point a small random symmetry-breaking
perturbation was added to the first azimuthal mode, and the flow
further evolved in time, leading to another asymptotic, butnow
asymmetric state seen in figure 5 (c). At large length and time
scales, the flow still has a period-doubling nature, indicating
that this is a robust feature.

Discussion

The experimental results of [1, 2, 9] provide a basis for compar-
ison to our DNS results. These were performed at a higher value
of Ured, but similar Reynolds number (Re≈ 600) and peak-to-
mean flow ratio (Upm≈ 1.7).

In [2] it is stated that ‘turbulence was found only for the 75%
stenosis and was created only during part of the cycle’, whereas
in [1] these fluctuations, which are strongest for 2.5 < z/D 6 6,
are characterised as non-turbulent owing to the presence inthe
conditional velocity spectra of a band of dominant frequencies
associated with ‘vortex shedding and a turbulent front’. These
findings are in quite good agreement with the dye-front flow
visualisation and interpretation provided by [9]. For the 75%
stenosis, they found four post-stenotic zones: Zone I, reaching
to z/D = 3, is called the ‘stable jet region’, although some indi-
cation of (apparently axisymmetric) wavy structure can be ob-
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Figure 5: Visualisations for the DNS of pulsatile flow atUred = 2.5, Re= 400. Isosurfaces are extracted using theλ2 criterion [8]. (a)
top and side views of the flow just after the initial saturation seen att/T = 40 in figure 4. (b) Two visualisations at later times in the
progression to the asymptotic state. Note the upstream movement of breakdown. (c) A detail perspective view of the breakdown of
vortex rings in the cycle followingt = 300T . Downstream of the stenosis, the first group of structures shows a ring deforming during
the final stages of the tilting process, while the second group shows the decaying breakdown of the previous ring.

served on the jet front in this region; Zone II, 3< z/D 6 4.5 is
called the ‘transition region’, where the waves become larger;
in Zone III, the ‘turbulent region’, 4.5 < z/D 6 7.5, the front
rapidly distorts; Zone IV,z/D > 7.5 is labelled ‘relaminariza-
tion’.

These experimental results are thus in reasonable agreement
with the kind of asymptotic behaviour we have observed in
DNS, as can be seen in figure 5 (b, c): a rapid distortion of a vor-
tex ring becoming evident a few diameters downstream of the
stenosis, leading to a highly unsteady/transitional breakdown at
z/D ∼ 6, following which relaminarisation takes place further
downstream.

Conclusions

Floquet analysis of three axisymmetric pulsatile flows shows
that they become three-dimensionally unstable through period-
doubling bifurcations involving alternating tilting of the vortex
rings that are ejected from the stenosis during each pulse cycle.
Direct numerical simulation shows that the instability evolves
to vortex ring breakdown, which moves progressively upstream
until it occurs a comparatively few tube diameters downstream
of the stenosis. As the bifurcations are subcritical, hysteretic
effects can be expected with respect to changes in Reynolds
number, reduced velocity, or peak-to-mean pulsatility near the
onset of three-dimensionality. The breakdowns are energetic
turbulent events, and will lead to regions of high temporal and
spatial gradients of wall shear stress where they occur. Forthe
Reynolds numbers studied here, the flow relaminarises further
downstream, and will eventually recover the conditions of the
pulsatile inflow. These findings are in good agreement with
available experimental results.
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