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Abstract 
The present paper is concerned with an experimental study of the 
occurrence of Taylor vortices between conical cylinders, the 
inner one rotating and the outer one at rest. Gap effect on the 
non-uniqueness of the Taylor vortex flow mode is investigated. 
Six different flow modes are observed according to the gap 
width, the acceleration of the inner rotating conical cylinder and 
Reynolds number. In one of the observed flow modes very large 
Taylor vortices are obtained with a wavelength up to 3.5 times 
the gap width. This kind of Taylor vortices has not been observed 
before in our knowledge.  
 

Introduction  
The non-uniqueness of flow states with Taylor vortices has been 
largely investigated in the circular Couette flow. Coles [1] 
conducted a deep investigation on the non-uniqueness of the 
Taylor vortex flow and showed that a large number of flow 
modes can be reached. He noticed that these flow states are 
sensitive to the flow history. The geometric effects have been 
particularly studied for Couette-Taylor flow systems with finite 
length [2-4]. The non-uniqueness of the Taylor vortex flow in 
systems other than circular cylinders has also been discussed. 
Wimmer [7] obtained different Taylor vortex flow modes 
between conical cylinders when the inner cylinder was rotating 
and the outer at rest. In recent years an increasing interest has 
been accorded to the study of flow mode selection related to 
Taylor vortices due to the acceleration effect of the inner rotating 
body in both circular cylinders and conical cylinders. Lim et al. 
[5] discovered the existence of a Taylor-vortex flow in a region 
where wavy Taylor vortices were expected according to the 
Reynolds number. Noui-Mehidi et al. [6] investigated the 
acceleration effect on the Taylor vortex flow mode observed 
between conical cylinders when the inner conical cylinder was 
accelerated linearly with different acceleration rates.  
In the classical Couette-Taylor system, different studies have 
reported that the maximal size of a Taylor vortex was less than 
1.1 times the gap width [2-4]. The main objective of this work 
was to investigate Taylor vortex size between conical cylinders in 
a wide gap configuration since in the early studies, vortices larger 
than twice the gap width were observed.     
    

Experimental Setup 
The experimental apparatus consists of a stainless steel machined 
inner conical cylinder and an outer conical cylinder made of 
Plexiglas. The square outer wall of the outer cylinder permits a 
good visualization and eliminates the effect of wall curvature 
leading to mis-observation. The outer stationary conical cylinder 
has an upper radius Roh = 50 mm. Two inner conical cylinders are 
used with the upper radius Rih= 34 and 42 mm respectively. The 
outer conical cylinder and the inner ones have the same apex 
angle φ = 16.38 degrees. Thus two configurations are obtained 
with axially constant gap of d1 = 8 mm for configuration I 

(denoted CI) and d2 = 16 mm for configuration II (denoted CII) 
in a horizontal direction respectively. At the top of the flow 
system the  radius  ratio  is  η1= Ri h / Roh  = 0.84   for  CI   and 
η2= Ri h / Roh  = 0.68 for CII.  Both top and bottom end plates are 
fixed in the experiments. The aspect ratio Γ = L / d is fixed to 
15.62 in CI and 7.81 in CII (L is the vertical height of the fluid 
column). The Reynolds number estimated with an accuracy better 
than 2.5%, is defined at the upper base for the largest radius, as: 

                 
ν
Ω= dihR

Re                                      (1) 

ν is the kinematic viscosity and Ω the rotational speed of the 
inner conical cylinder.  In CI the working fluid is a 66% solution 
of glycerol in filtered water and in CII the working fluid is a 33 
% solution of glycerol in filtered water. For flow visualization, 
2% of Kalliroscope AQ 1000 is added to each of the working 
fluids. The temperature is measured by a thermo-couple of 
Copper-Constantan with accuracy better than 0.1 ºC. The 
kinematic viscosity ν 
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cS and 4.62 cS for CI and CII at 25 ºC.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1.  Experimental system. 

 
In the present study, a computer controls the DC motor rotating 
the inner body. A program written in Visual Basic permits to fix 
the acceleration path as an output voltage sent to the motor. Thus 
the acceleration rate β (rad/s2) is related to the slope of the linear 
increase in the angular velocity from zero to the chosen speed. 
When the desired final value is reached, the inner conical 
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cylinder is rotated with a constant speed. The speed counter gives 
readings with accuracy better than 1%.  Sudden accelerations are 
not investigated in the present study. The observations are 
repeated many times to ensure the reproduction of the observed 
flow states. The regimes investigated here correspond to 
Reynolds numbers between 0 and 1000.    
 
Experimental Results 
Previous studies [6][7] have shown that the laminar-turbulent 
transition of flow between conical cylinders is more sensitive to 
the geometrical and dynamical parameters than the flow between 
concentric cylinders. The transition is mainly marked by a 
bifurcation branching, which occurs at the early observed 
instabilities.  
 
Transition to Taylor Vortices 
The transition scenario in the present flow system has been 
previously reported by Noui-Mehidi et al. [6]. The basic flow is 
three-dimensional, the meridional flow being upward along the 
inner rotating conical cylinder and downward along the outer 
fixed one. At the critical Reynolds number of 132, a first vortex 
rotating inwards to the end plate appears at the top of the flow 
system where the radius is the largest. When Re is increased 
further a pair of counter-rotating vortices takes place below the 
first vortex. For further increase of Re more vortices are observed 
below the previous ones. When ¾ of the fluid column is filled 
with these vortices, according to the acceleration rate two 
transitions can occur when Re is increased: 1. For acceleration 
rates less than 0.07 rad/s2 a helical structure takes place in the 
flow system. The motion is downwards and the helical vortices 
are counter-rotating two by two. This structure winds around the 
inner rotating body like a coil giving the effect of the “barber-
pole” for a stationary observer. 2. The second transition occurs 
for acceleration rates higher than 0.07 rad/s2. The previously 
observed first vortices move upwards until they fill completely 
the fluid column. Periodically a new pair of vortices is born at the 
bottom of the flow system while at the top the third vortex below 
the end plate disappears due to the upward motion and the two 
neighbouring cells merge to form a big vortex. For higher Re and 
acceleration rates, the upward motion stops and regimes of 
Taylor vortices are observed. The number of Taylor vortices 
obtained depends on the acceleration rate and the Reynolds 
number.  
 

Taylor Vortices Wavelength  
Taylor vortices have been investigated widely in the system of 
concentric cylinders. The wavelength limits have been studied 
numerically and experimentally. Dominguez-Lerma et al. [3] 
showed that the wavelength in the Taylor vortex flow mode can 
be different from the critical wavelength calculated theoretically 
when Re is changed slightly near its critical value Rc. The larger 
wavelength obtained in their experiments did not exceed 2.4 
times the gap width.  
Taylor vortex size in the flow between conical cylinders is not 
constant axially [6][7]. The definition of a wavelength is quite 
delicate since a pair of counter-rotating vortices is formed of one 
large cell and a one smaller cell, the larger cell being below as 
can be seen in Figs.2 and 3. The sizes of the large and small cells 
even vary from one axial position to the other. The vortex at the 
bottom of the flow system is the largest compared to the other 
large vortices above. The larger vortices are rotating in the same 
sense as the meridional flow i.e. upwards along the inner rotating 
body and downwards along the fixed one. The smaller vortices 
are counter rotating to the meridional flow. On the other hand the 
large vortex size decreases from the bottom to the top of the 
system, the smaller vortices have the same behaviour.   

         

 

 
 

Fig.2.  Vortex flow modes observed in CI, 
(a) Re=347, (b) Re=516 and (c) Re=672. 

 
 

 

 

 
 

Fig.3.  Vortex flow modes obtained in CII,  
(a) Re=92, (b) Re=88 and (c) Re=85. 

 
 
The wavelength can be defined as the size of a vortex pair, one 
large and the adjacent counter rotating small one. The mid-point 
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of an imaginary line joining the vortex centres is taken as the 
axial location of the wavelength measurements. The flow modes 
observed in CI are shown in Fig.2. As can be seen there are three 
different Taylor vortex flow modes with 6-pair, 7-pair and 8-pair 
of Taylor vortices. The wavelength axial evolution is presented in 
Fig.4 (N is the number of vortices). The non-dimensional 
wavelength λ∗ is defined as the ratio of the local wavelength λ to 
the gap width d. λ∗ is plotted against the axial position z*=z/L, L 
being the vertical fluid column height and z=0 at the bottom of 
the flow system.  

 
Fig.4.  Axial evolution of the non-dimensional  

wavelength λ* in CI. 
 

It is worth noting that the size of the first pair of vortices at the 
bottom of the system in the three modes forms a wavelength 
varying between 3 and 3.5 times the size of the gap width. The 
wavelength decreases from the bottom to the top in the three 
observed modes 6-pair, 7-pair and 8-pair. In the 6-pair flow mode 
the wavelength decreases from 3.5 to 2.2, which corresponds to 
values still above the critical wavelength known in the Taylor-
Couette system (λ*=2). The situation in the 7-pair and 8-pair 
flow modes is different. In the 7-pair flow mode the wavelength 
decreases from a value of 3.5 to 1.7 except at the top where the 
vortex near the end plate has a larger size. In the 8-pair flow 
mode, λ* decreases from 3 to values near 1.5 at the top of the 
flow system except the top vortex at the end plate. The 
wavelength decrease in the 8-pair flow mode is characteristic to 
this system since it decreases from a value above the critical λ* 
to values lower than the critical one. The top vortex near the end 
plate in the three modes is related to the Ekman layer thus 
presents sizes larger than the vortices below.  
The experiments performed in the system configuration CII 
resulted in uncommon vortex flow modes. With a gap size of 16 
mm three flow modes could be generated with 2-pair, 4-pair and 
6-pair of Taylor vortices only as can be seen in Fig.3. 
The same definition of the wavelength is adopted in the 
configuration CII to represent the axial evolution of the vortices 
size. As shown in Fig.5 the wavelength decreases from the 
bottom to the top in both 3-pair and 4-pair flow modes. 
In the 3-pair flow mode the wavelength decreases from 3 to 2, 
which indicates that one pair of vortices has a size larger than the 
critical value while the two other pairs above have a wavelength 
corresponding to the critical known value. 
The 3-pair flow mode is shown in Fig.3b for Re=88. In the 4-pair 
vortex mode, obtained at a Reynolds number of 85 (Fig.3c), 

 
Fig.5 Axial evolution of the non-dimensional  

wavelength λ* in CII. 
 
 
 

the wavelength decreases from 2 to 1.5 giving values of the 
wavelength smaller than the critical λ*. It can be remarked that in 
both 3-pair and 4-pair modes the wavelength formed by the top 
vortices is slightly larger than the one below as observed 
previously in CI. 
 
 

 
 

Fig.6 Non-dimensional vortex size axial variation in CII. 
 

 
 
 
The situation is completely different in the case of 2-pair vortex 
mode. As seen in Fig.5 each of the two pair of vortices forms a 
very large wavelength λ* with a value around 3.2. These two 
pairs of vortices can be seen in Fig. 3a for Re=92. It can be 
remarked that this type of vortices (2-pair) is obtained for a 
Reynolds number value higher than the one related to the 3-pair 
and the 4-pair modes. In order to compare individual vortices 
obtained in the configuration CII, the non-dimensional vortex 



 

size s*=s/d is presented in Fig.6 for each of the three modes 2-
pair, 3-pair and 4-pair. In the 2-pair mode, the first vortex at the 
bottom of the flow system has almost 2.4 times the size of the 
gap width d, while the next small vortex above has only 0.8 times 
the size of the gap d. The difference in size between the larger 
vortices and the smaller ones is less important in the 4-pair flow 
mode except at the bottom of the system where the vortex is the 
largest.  As deduced from Fig.6 the gap effect on the vortices size 
can be better expressed in terms of single vortex size than in 
terms of wavelength presented in Fig.5. 
The present results have shown that Taylor vortices with a very 
large size can be generated between the conical cylinders when 
the gap is wide. These flow properties are specific to the studied 
system and have not been observed in other flow systems.    
   
 
 
Conclusions 
 
In the present work, flow visualization has shown that Taylor 
vortices generated between conical cylinders, the inner rotating 
and the outer at rest, can reach sizes up to 2.4 times the gap 
width. This kind of vortices has not been observed before 
between rotating circular cylinders or other rotating systems. The 
present results constitute a good challenge for more experimental 
and numerical investigation of the different effects leading to the 
occurrence of such vortices.   
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