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Abstract 
   In this study we investigate, using direct numerical simulation, 
the transient two-dimensional natural convection flow in a square 
cavity with isoflux side walls and adiabatic top and bottom 
boundaries. The equations of motion were solved using a non-
iterative fractional-step pressure correction method which 
provides second-order accuracy in both time and space.  Several 
features of the flow are identified and discussed in detail, in 
particular, the flow behaviour in the vertical thermal boundary 
layers along the side walls and in the horizontal intrusions 
adjacent to the top and the bottom boundaries. The results show 
that the transient flow features obtained for the isoflux cavity are 
similar to the flow features for the isothermal case.  However, the 
fully developed flow features of the isoflux cavity are very 
different from the isothermal case.   
 
Introduction  
   Natural convection in closed cavities has received a lot of 
attention because of its wide range of engineering applications.  
In the past, natural convection in a rectangular enclosure with 
vertical isothermal walls has been studied extensively, both 
experimentally and numerically.  A classification of the develop- 
ment of the flow by Patterson & Imberger [1], a series of 
experiments by Ivey [2], and a comparison of numerical and 
experimental results by Patterson & Armfield [3] and Armfield & 
Patterson [4,5] are examples of previous isothermal cavity 
investigations.  On the other hand, the cavity with isoflux walls 
has received much less attention. Kimura & Bejan [6] examined 
this case, but details of the flow features were not reported.  The 
objectives of this study are to investigate the flow features from 
initiation until full development and compare the results with the 
isothermal cavity results of Patterson & Armfield [3].          
 
Numerical Method 
Governing Equations 
   The square cavity configuration is given in figure 1. The cavity 
is of width L, a uniform heat flux is specified along the no-slip 
side walls with isoflux in on the left wall and isoflux out on the 
right wall.  The horizontal walls are adiabatic and no-slip. The 
governing equations are the two-dimensional Navier-Stokes and 
energy equations based on the Boussinesq assumption.  The 
equations are written in non-dimensional form as follows: 
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where u and v are the velocity components in the x- and y-
direction, t is time, p is pressure and T is temperature. In these 
equations, velocity is non-dimensionalized by U=υ/L, length by 

L, time by L2/υ, pressure by ρ(υ/L)2, and (T-To) by q”L/k.  Prandtl 
number and Rayleigh number are defined as,  
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where β is the coefficient of volume expansion, q” is heat flux, α 
is the thermal diffusivity, υ is the kinematic viscosity and k is 
the thermal conductivity.   
 
 
 

 
 
 
 
 
 
 
 
 

Figure. 1 Computational domain and coordinate system. 
 
The corresponding dimensionless initial and boundary conditions 
are  
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Discretization  
   Because of the large variation in length scales it is necessary to 
use a mesh that concentrates points in the boundary layer and is 
relatively coarse in the interior.  The meshes are constructed 
using an exponentially stretched grid.  The basic mesh uses 
110x110 grid points, which are distributed symmetrically with 
respect to the domain half-width and half-height.  The smallest 
grid size, near the boundaries, is 0.002. Away from the 
boundaries, the mesh stretching factor is 1.05.  The mesh is 
generated with this expanding rate until it reaches half of the 
domain, resulting in a coarse mesh in the interior. The time step 
used was   1x10-5. 
   The direct numerical simulations have been carried out using a 
finite volume method. The governing equations are discretized on 
a non-staggered mesh, with standard second-order central 
differencing used for the viscous, pressure gradient, and 
divergence terms, whereas the QUICK third-order upwind 
scheme is used for the advective terms. The momentum and 
temperature equations are solved using an ADI scheme. The 
second-order Adams-Bashforth scheme and Crank-Nicolson 
scheme are used for the time integration of the advective terms 
and the diffusive terms, respectively. To enforce continuity, the 
non-iterative fractional-step pressure correction method is used to 
construct a Poisson equation, which is solved using the 
Preconditioned Conjugate Gradient method. 



 

Results 
   Results will be obtained with the isoflux boundary condition 
for Ra=1x1010 and Pr=7.5, with the general flow structure and 
behaviour compared to those presented in Patterson & Armfield 
[3] for isothermal boundary conditions. The Patterson & 
Armfield [3] results were presented in dimensional form for a 
square cavity of height 0.24 m (h=0.24m) and obtained for 
Ra*=3.26 x108 and Pr=7.5 where Ra*=gβ∆Th3/υα. A summary of 
the results obtained by Patterson & Armfield [3] is as follows. 
   Patterson & Armfield [3] divided the flow development into 
two stages; the first stage from 0 to 150 s and the second stage 
from 150 s to full development, at approximately 1500 s. The 
first stage is associated with the development of thermal 
boundary layers on the heated and cooled walls, which can be 
seen in figure 2, which shows the temperature in the boundary 
layer at y = 0.12 m  and x = 0.002 m from the hot wall, plotted 
against time, with both numerical and experimental results 
shown.  
 

 
Figure. 2 Time traces of temperature at mid-height of the cavity for 
isothermal case with Ra*=3.26x108 [3]. 
 
   The initial rapid increase in temperature shows the thermal 
boundary layer growth, which at this height has reached full 
development by time 100 s. It is also observed that transition to 
full development in the boundary layer is associated with an 
oscillation in the signal, at approximately 40 s. This oscillation is 
caused by a series of waves travelling up the heated boundary 
layer, generated by the impulsive start-up of the system. The 
thermal boundary layers eject heated and cooled intrusions at the 
top and bottom of the hot and cold walls respectively. These 
intrusions travel across the cavity, with the heated intrusion in 
contact with the upper boundary and the cooled intrusion in 
contact with the lower boundary, striking and interacting with the 
base of the far wall boundary layer. This interaction perturbs the 
boundary layer, producing a second set of travelling waves that 
transit the boundary layer in the flow direction, seen in the 
second set of oscillations in figure 2, at approximately 170 s. The 
boundary layers are only able to entrain part of the intrusion 
flow, with the remainder rebounding from the far wall and setting 
up a seiching motion in the cavity. The development of the flow 
from this stage is associated with considerable activity in the 
intrusions, which gradually fill the cavity with stratified fluid. As 
the flow approaches full development the intrusion activity 
gradually diminishes, with the steady state flow consisting of a 
fully stratified interior with a cavity scale circulation, as shown in 
figure 3, where the flow is shown with the hot wall on the left.  
 

 
 

Figure 3. The mirror stream function contour in the isothermal cavity of 
Patterson & Armfield [3] at near steady state. 

   As noted above the isoflux boundary condition results 
presented here have been obtained with Ra=1x1010. This value 
was chosen because it gave approximately the same thermal 
boundary layer thickness (3% of the cavity width) as the 
Ra*=3.26x108 isothermal boundary condition case (compare 
figure 9(a), below, with figure 2(a) of Patterson & Armfield [3]).  
Figure 4 presents a temperature time series obtained at x= 0.01 
and y = 0.5.  Comparing this to figure 2 above, it is seen that the 
thermal boundary layer shows a qualitatively similar 
development, with an initial growth accompanied by a decaying 
oscillation followed by a second decaying oscillation.  Both these 
sets of oscillations represent travelling waves, as in the 
isothermal case, with the initial set generated by the impulsive 
start-up and the second set generated by the intrusion striking the 
far wall. The general development for the isoflux boundary 
condition is therefore similar to that of the isothermal boundary 
condition. 

 
Figure. 4 Time traces of temperature at x=0.01, y=0.5 cavity for isoflux 
case with Ra=1.0x1010. 
 
   Detailed flow development for the isoflux boundary condition 
is shown in figure 5, in the form of streamfunction contours. 
Figures 5(a-f) show 12 equally spaced contours between the 
maximum and minimum values, while figures 5(g-i) show 30 
equally spaced contours, with the latter contour value chosen to 
more clearly demonstrate the features of the latter part of the 
development. In all cases the heated wall is on the left. 
    
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 5 Time evolution of the contours of stream function fields in the 
domain for Ra=1x1010, Pr=7.5 at various times. (a) t=0.001; (b) t=0.002;  
(c) t=0.003; (d) t=0.004; (e) t=0.006; (f) t=0.025; (g) t=0.1; (h) t=0.55; (i) 
t=2.5. 

             (a)                                    (b)                                    (c) 

             (g)                                    (h)                                    (i) 

             (d)                                    (e)                                    (f) 



 

   For the isoflux boundary condition the flow development is 
most appropriately divided into three stages. The first stage,  
figures 5(a-c), is associated with the development of the thermal 
boundary layers, the generation of the intrusions, which are 
clearly seen travelling from the top of the heated wall towards the 
cooled wall, and vice-versa for the cooled wall, and the establish- 
ment of two circulations. The second stage, shown in figures 5(d-
f), shows the intrusion striking the far walls, the generation of   a   
separated   backward   flowing   region within intrusions, and 
finally a cavity scale flow. The third stage, shown in figures 5(g-
i), shows the full development of the flow in which the interior 
circulation gradually decays until finally the interior is quiescent, 
with flow only in the regions of the boundaries. This fully 
developed flow is complex, with an outer clockwise circulation 
following the boundary and an inner reverse circulation, as may 
be seen by the flow direction arrows included in figure 5(i). This 
reverse flow is accompanied by closed circulations adjacent to 
the horizontal boundaries, with additional interior reverse 
circulations also seen. However away from the horizontal 
boundaries the flow adjacent to the vertical boundaries is parallel 
to the boundaries. Temperature contours, presented in figure 6, 
show that at full development the cavity is fully stratified. The 
structure of the boundary layer adjacent to the vertical wall is 
seen in figure 7, which shows a horizontal profile of the vertical 
velocity at y=0.5.  The inner region of reversing flow is clearly 
visible in the region x=0.027-0.055. 
 

 
 

      Figure. 6 Temperature contour of fully developed flow t=2.5. 
 

    
Figure. 7 Profile of vertical velocity along horizontal distance from the 
hot wall at y=0.5.  
 
   The first two stages of flow for the isoflux boundary condition 
are very similar to the isothermal boundary condition, with 
similar boundary and intrusion growth, two sets of travelling 
boundary layer waves with the same generation mechanisms, 
unsteady intrusion activity and eddy formation. The third stage 
however is quite different, indicating different heat transfer 
characteristics and scaling.  It is therefore of interest to determine 
appropriate scalings for the isoflux boundary condition flow and 
compare them to scalings for the isothermal boundary condition 
flow. Scalings for the isoflux boundary condition flow may be 
obtained as follows.  Combining the one-dimensional solution of 
Lietzke [7] with an energy balance relation [6] allows scalings to 
be obtained for the length, velocity and temperature for an evenly 
heated cavity of the following form; 
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   It is expected that these scalings will apply to the boundary 
layers on the cavity walls far enough away from the floor and 
ceiling such that the flow is approximately parallel. As observed 
above at Ra=1x1010 parallel regions of flow are observed 
adjacent to the walls and these scalings will therefore be tested 
for the boundary layer profiles obtained at the wall half height. 
   Figure 8 contains the profiles of the vertical velocity at four 
Rayleigh numbers at steady state at y=0.5, with the raw data 
shown in figure 8(a).  The profiles show the typical structure of 
the natural convection boundary layer.  The scaling obtained 
indicates that velocity will scale with the 1/3 power of the 
Rayleigh number, while the boundary layer thickness will scale 
with the -2/9 power of the Rayleigh number. Scaled results are 
shown in figure 8(b).  As can be seen the scaling brings all results 
onto a single curve indicating that the numerical velocity solution 
obeys the scaling relations. 
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Figure. 8 Vertical velocity profiles of fully developed flow at various Ra; 

(a) raw data, (b) scaled data. 
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        (b) 
Figure. 9 Temperature profiles of fully developed flow at various Ra;  
(a) raw data, (b) scaled data. 



 

   The temperature profiles near the hot wall at steady state of 
four Rayleigh numbers at y=0.5 is shown in figure 9(a).  The 
scaling obtained indicates that temperature will scale with the  
-2/9 power of the Rayleigh number, while the boundary layer 
thickness, again, will scale with the -2/9 power of the Rayleigh 
number as shown in figure 9(b).  Again the scaling is seen to 
bring all the temperature profiles onto a single curve, validating 
the scaling relations. 
   The scaling results of the length and velocity for the natural 
convection in the cavity with isoflux boundaries at steady state 
can compared with the isothermal boundaries scalings of 
Patterson & Imberger [1] as summarized in table 1.  It shows that 
the scaling results of the isoflux case differ from of the 
isothermal case [1] in every case.  Thus, the Ra chosen for the 
present study is larger than Ra* used for isothermal case [3] to 
yield approximately the same boundary layer thickness and 
development time as the isothermal case [3]. 
 

Types of boundary  
Isothermal [1] Isoflux 

Length scale x ~ Ra* -1/4 x ~ Ra -2/9 
Velocity scale v ~ Ra* 1/2 v ~ Ra 1/3Pr -1 

 
Table 1. The comparison of length and velocity scaling results of the 
isothermal case [1] and of the isoflux case. 
 
Conclusion 
   The flow features in the first two stages of flow development, 
described above, are similar to those for the isothermal boundary 
condition case, described by Patterson & Armfield [3].  However 
the fully developed flow is quite different with the isoflux 
boundary condition cavity having a flow only in the vicinity of 
the boundaries, with a quiescent core. The isothermal boundary 
condition cavity displays cavity scale circulation with a non-
quiescent core. Clearly the interaction of the isoflux boundary 
condition with the cavity flow is different to that of the 
isothermal boundary condition. The scalings for the fully 
developed isoflux boundary condition flow have also been found 
to be different to those of the isothermal boundary condition 
flow.  The length scale for the isoflux case will be reduced more 
rapidly with increasing Rayleigh number, while the velocity scale 
will be increased more rapidly. 
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