Thank you for your interest in the 1st Australasian Conference on Computational Mechanics (ACCM2013). Please send your abstract as an email attachment to our conference secretary accm2013@gmail.com as soon as possible.

Select your symposium:

☐ Adaptive meshing for fluid dynamics
☐ Advanced computational cardiovascular modelling
☐ Advanced developments on finite element and meshless technologies
☐ Advanced gridding and discretization techniques for petroleum reservoir simulation
☐ Advanced materials: computational analysis of properties and performance
☐ Advanced numerical methods for fluid structure interaction
☐ Advances in boundary element methods and mesh reducing techniques
☐ Advances in discontinuous galerkin method
☐ Advances in membrane structures computations
☐ Bio- and nano-mechanics and materials with applications
☐ Computational aspects in damage and failure mechanics
☐ Computational aspects of smart structures and materials
☐ Computational bioengineering and biomedicine
☐ Computational bioimaging and visualization
☐ Computational biomechanics
☐ Computational contact mechanics
☐ Computational geomechanics
☐ Computational mechanics of composite materials
☐ Computational modelling and simulation in dentistry
☐ Generalised continuum, higher-order homogenization and multiscale methods
☐ Generalised/extended FEM and other enriched partition of unity based methods
☐ Inverse problems, design and optimization
☑ Multidisciplinary design optimization in computational mechanics
☐ Multi-scale computational modelling
☐ New trends in topology optimisation
☐ Other, please specify

Abstract title

Novel wing box design
Authors

Joy-Della El Tom+, Gareth A. Vio*

Affiliations

+Undergraduate Student, School of AMME, The University of Sydney, Sydney NSW 2006
*Lecturer, School of AMME, The University of Sydney, Sydney NSW 2006

Main body of abstract

Gust loads are one of the critical load cases for commercial aircraft and have a varied effect on the structures, ranging from ride roughness up to total failure of the aircraft. The ability of an aircraft to withstand gust loads is one of the critical airworthiness requirements for certification but fatigue loading effects must also be considered. Gust alleviation research has concentrated in designing control systems to make use of control surface to alleviate the induced loading. LIDAR systems have been proposed to increase the effectiveness of the control laws. Gust alleviation systems in composite structures have concentrated in controlling the gust-induced vibration by embedding piezo-composite materials inside the composite lay-up.

The idea of using the directional property of composites for aeroelastic tailoring has been around since the 70s. However, since tailoring was demonstrated on the X-29 in the late 70s and early 80s, very few aircraft have used these directional properties to achieve beneficial aeroelastic effects. The original application was to reduce the likelihood of divergence occurring on forward-swept wings; recent applications have included weight reduction and drag reduction of composite wings. Although the new generation of commercial civil aircraft have started to use composites, they have only exploited the superior strength/weight ratio of composite materials rather than employ aeroelastic tailoring. Current composite designs can be considered to be only applied as a black metal, with the metal simply being replaced by the composite, rather than exploiting the unidirectional properties of the new materials. As with any new technology, designing with a new material brings new challenges and possibilities. Composite manufacturing does not have the same constraints as its metal equivalent, and the possibilities that this presents will be exploited here.

There are a wide range of different optimisation approaches that can be used for aeroelastic problems. Genetic algorithms have been proven to be effective for large parameter space solutions. They have been widely used as optimisation tools for a variety of problems, from plant processing system to nonlinear system identification. In the aeroelastic tailoring environment, genetic algorithms have been used to minimise the structural weight whilst satisfying a number of aeroelastic parameters such as flutter and divergence.

Presenting author’s information

<table>
<thead>
<tr>
<th>First name</th>
<th>Joy-Della</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle name</td>
<td></td>
</tr>
<tr>
<td>Last name</td>
<td>El Tom</td>
</tr>
<tr>
<td>Profession</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>If you choose other, please give details</td>
<td></td>
</tr>
<tr>
<td>Organisation</td>
<td>The University of Manchester</td>
</tr>
<tr>
<td>Department</td>
<td>School of AMME</td>
</tr>
<tr>
<td>Email Address</td>
<td>gareth.vio@sydney.edu.au</td>
</tr>
</tbody>
</table>

- ✔ Oral presentation
- □ Poster presentation

Gareth Arthur Vio