Thank you for your interest in the 1st Australasian Conference on Computational Mechanics (ACCM2013). Please send your abstract as an email attachment to our conference secretary accm2013@gmail.com as soon as possible.

Select your symposium:
- Adaptive meshing for fluid dynamics
- Advanced computational cardiovascular modelling
- Advanced developments on finite element and meshless technologies
- Advanced gridding and discretization techniques for petroleum reservoir simulation
- Advanced materials: computational analysis of properties and performance
- Advanced numerical methods for fluid structure interaction
- Advances in boundary element methods and mesh reducing techniques
- Advances in discontinuous galerkin method
- Advances in membrane structures computations
- Bio- and nano-mechanics and materials with applications
- Computational aspects in damage and failure mechanics
- Computational aspects of smart structures and materials
- Computational bioengineering and biomedicine
- Computational bioimaging and visualization
- Computational biomechanics
- Computational contact mechanics
- Computational geomechanics
- Computational mechanics of composite materials
- Computational modelling and simulation in dentistry
- Generalised continuum, higher-order homogenization and multiscale methods
- Generalised/extended FEM and other enriched partition of unity based methods
- Inverse problems, design and optimization
- Multidisciplinary design optimization in computational mechanics
- Multi-scale computational modelling
- New trends in topology optimisation
- Other, please specify

Reviewed choice

Abstract title

Numerical Simulation of Free-Air Explosion using LS-DYNA
Currently, based on the development of advanced computational technologies, studies of the effects of explosions on large structures have become possible and as a consequence, the number of destructive experiments and their high cost can be reduced significantly. This paper presents a study of air burst explosion wave propagation using computational modelling based on LS-DYNA. Incident and reflected pressure waves are investigated, as well as the mesh sensitivity and different scaled distances, and the results are validated by an empirical method. Multi-material Arbitrary Lagrangian-Eulerian (MM-ALE) and LBE-ALE coupled methods are used to model blast and the effects of parameter values adopted in these methods, as well as the charge shape, on the propagation law are studied. The results show that LS-DYNA can effectively simulate an air burst explosion. The LBE-ALE method has a significant computational time saving, especially where larger scaled distances occur. Additionally, the mesh size has a large influence on the peak incident and reflected pressures. It is observed that there is an optimum range of the mesh size in relation to the sizes of the scaled distance and air domains. Different charge shape causes different pressure distribution over air domain.

Keywords: Numerical, Explosion, incident pressure, reflected pressure, LS-DYNA.
<table>
<thead>
<tr>
<th>Presenting author’s information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First name</td>
<td>SeyedKomeil</td>
</tr>
<tr>
<td>Middle name</td>
<td></td>
</tr>
<tr>
<td>Last name</td>
<td>Hashemi</td>
</tr>
<tr>
<td>Profession</td>
<td>Postgraduate</td>
</tr>
<tr>
<td>If you choose other, please give details</td>
<td></td>
</tr>
<tr>
<td>Organisation</td>
<td>Centre for Infrastructure Engineering and Safety (CIES)</td>
</tr>
<tr>
<td>Department</td>
<td>School of Civil and Environmental Engineering, UNSW</td>
</tr>
<tr>
<td>Email Address</td>
<td>s.hashemiheidari@unsw.edu.au</td>
</tr>
<tr>
<td></td>
<td>[✓] Oral presentation</td>
</tr>
</tbody>
</table>