Thank you for your interest in the 1st Australasian Conference on Computational Mechanics (ACCM2013). Please send your abstract as an email attachment to our conference secretary accm2013@gmail.com as soon as possible.

Select your symposium:
- Adaptive meshing for fluid dynamics
- Advanced computational cardiovascular modelling
- Advanced developments on finite element and meshless technologies
- Advanced gridding and discretization techniques for petroleum reservoir simulation
- Advanced materials: computational analysis of properties and performance
- Advanced numerical methods for fluid structure interaction
- Advances in boundary element methods and mesh reducing techniques
- Advances in discontinuous galerkin method
- Advances in membrane structures computations
- Bio- and nano-mechanics and materials with applications
- Computational aspects in damage and failure mechanics
- Computational aspects of smart structures and materials
- Computational bioengineering and biomedicine
- Computational bioimaging and visualization
- Computational biomechanics
- Computational contact mechanics
- Computational geomechanics
- Computational mechanics of composite materials
- Computational modelling and simulation in dentistry
- Generalised continuum, higher-order homogenization and multiscale methods
- Generalised/extended FEM and other enriched partition of unity based methods
- Inverse problems, design and optimization
- Multidisciplinary design optimization in computational mechanics
- Multi-scale computational modelling
- New trends in topology optimisation
- Other, please specify
- Reviewers’ choice

Abstract title

Smoothed Particle Hydrodynamics applied to the modelling of landslides
Landslides are among the most devastating natural hazards because they often initiate rapidly and mobilize very large volumes of material. While the mechanics of landslides is relatively well understood it is still extremely difficult to anticipate any particular event and estimate its potential consequences. Indeed the variety of triggering factors and the specific geomorphological characteristics of the slope make each landslide unique. Meshfree methods are ideally suited to handle large deformations associated with slope failure but they often assume the mechanism of failure a priori. In this work we apply Smoothed Particle Hydrodynamics to simulate all phases of a landslide within one single numerical platform. A Drucker-Prager model is used to determine the onset of failure. The post-failure behaviour is accommodated naturally by the meshfree nature of the method. The relevance of the method to the modelling of landslides is demonstrated on several example of slope failure.
<table>
<thead>
<tr>
<th>Presenting author’s information</th>
</tr>
</thead>
<tbody>
<tr>
<td>First name: Vincent</td>
</tr>
<tr>
<td>Middle name:</td>
</tr>
<tr>
<td>Last name: Lemiale</td>
</tr>
<tr>
<td>Profession: Other</td>
</tr>
<tr>
<td>If you choose other, please give details: Research scientist</td>
</tr>
<tr>
<td>Organisation: CSIRO</td>
</tr>
<tr>
<td>Department: Mathematics, Informatics and Statistics</td>
</tr>
<tr>
<td>Email Address: vincent.lemiale@csiro.au</td>
</tr>
</tbody>
</table>

- [✔] Oral presentation
- [] Poster presentation