Thank you for your interest in the 1st Australasian Conference on Computational Mechanics (ACCM2013). Please send your abstract as an email attachment to our conference secretary accm2013@gmail.com as soon as possible.

Select your symposium:

- [] Adaptive meshing for fluid dynamics
- [] Advanced computational cardiovascular modelling
- [] Advanced developments on finite element and meshless technologies
- [] Advanced gridding and discretization techniques for petroleum reservoir simulation
- [] Advanced materials: computational analysis of properties and performance
- [] Advanced numerical methods for fluid structure interaction
- [] Advances in boundary element methods and mesh reducing techniques
- [] Advances in discontinuous galerkin method
- [] Advances in membrane structures computations
- [] Bio- and nano-mechanics and materials with applications
- ✔ Computational aspects in damage and failure mechanics
- ✔ Computational aspects of smart structures and materials
- ✔ Computational bioengineering and biomedicine
- ✔ Computational bioimaging and visualization
- ✔ Computational biomechanics
- ✔ Computational contact mechanics
- ✔ Computational geomechanics
- ✔ Computational mechanics of composite materials
- ✔ Computational modelling and simulation in dentistry
- ✔ Generalised continuum, higher-order homogenization and multiscale methods
- ✔ Generalised/extended FEM and other enriched partition of unity based methods
- ✔ Inverse problems, design and optimization
- ✔ Multidisciplinary design optimization in computational mechanics
- ✔ Multi-scale computational modelling
- ✔ New trends in topology optimisation
- [] Other, please specify
- [] Reviewers’ choice

Abstract title

| Computational modelling of woven fabrics subjected to ballistic impact |
Fabrics made from high-performance fibres such as Kevlar and Dyneema posses high flexibility, high strength-to-weight ratio, and outstanding energy absorption capacity for offering protection against ballistic impact. Among the various mechanisms influencing the impact resistance of textiles, fabric structure has been identified as one of the major factors capable of significantly influencing the mechanical performance and energy absorption of woven fabrics. This study aims at investigating the effect of fabric structures towards its ballistic resistance through computational modelling in meso-scale. Material models of aramid yarns (Kevlar 29) were constructed using mechanical properties obtained through experiments. Fabric models of four different woven structures: Plain, Satin, Twill, and Basket were then created in FE modelling package. Simulation results focusing on impact energy absorption and failure mechanism were then analyzed, in order to provide detail comparison in impact resistance between the four woven fabric structures.
<table>
<thead>
<tr>
<th>Presenting author’s information</th>
</tr>
</thead>
<tbody>
<tr>
<td>First name</td>
</tr>
<tr>
<td>Profession</td>
</tr>
<tr>
<td>Organisation</td>
</tr>
<tr>
<td>Department</td>
</tr>
<tr>
<td>Email Address</td>
</tr>
</tbody>
</table>

- Oral presentation ✔
- Poster presentation ☐