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1. Abstract  
Topology optimization yields an overall layout of a structure in the form of discrete density (e.g., SIMP) or 
continuous boundary geometry (e.g., level-set method). One of important drawbacks, however, is that it leads to a 
geometry with zigzag boundaries and/or irregular shapes, which is difficult to be interpreted for manufacturability, 
as well as to be utilized in subsequent applications such as shape optimization. It is considered the most significant 
bottleneck to interpret topology optimization results and to produce a parametric CAD model that can be used for 
shape optimization. The objective of this paper is to interpret geometric features out of a topology design to 
minimize human intervention in producing a parametric CAD model. The active contour method is first used to 
extract boundary segments from the greyscale image of topology optimization. Using the information of roundness 
and curvature of segments, simple geometric features, such as lines, arcs, circles, fillets, extrusion and sweep, are 
then identified. An optimization method is used to find parameters of these geometric features by minimizing 
errors between the boundary of geometric features and that of actual segments. Lastly, using the parametric CAD 
model, surrogate-based shape optimization is employed to determine the optimal shape. The entire process is 
automated with MATLAB and Python scripts in Abaqus, while manual intervention is needed only when defining 
geometric constraints and design parameters. 2-D beam and plate structures are presented to demonstrate 
effectiveness of the proposed methods. 
2. Keywords: geometric features identification, active contour method, topology optimization, shape 
optimization, section optimization 
 
3. Introduction 
As one of the most active research topics in the field of structural optimization, topology optimization yields a 
prediction of the structural type and overall layout of materials. It can obtain robust results based on 
well-developed numerical approaches, and has received more and more research attentions recently because of its 
great potential of application to many industrial areas. Since most topology optimization approaches are 
element-based, where the initial design space is discretized by uniform rectangular finite elements and the design 
variables are assumed to be constant within each finite element, it is efficient in computation and has been applied 
successfully for solutions of many industrial optimization problems. However, one of important drawbacks of 
topology optimization is that, it is difficult to interpret topological results in terms of geometric features for 
conventional manufacturability. The optimal topological results often come out as greyscale images with zigzag 
boundaries and irregular shapes. They are not only difficult to make in the perspective of manufacturability, but 
also cannot be used directly in subsequent applications such as section and shape optimization. These problems are 
due to the lack of geometric boundary features and model parameterization. Many engineering applications require 
a shape of parameterized and smooth geometry, especially for manufacturing. There is a gap in automated 
geometric information extraction techniques in order to seamlessly integrate topology optimization with section 
and shape optimization. Therefore, there are needs to identify geometric features out of topology design and to 
obtain simple and smooth shapes for achieving cost-efficient design and for manufacturing components 
economically.  

In the literature, some conventional methods were proposed to identify geometric boundaries by using image 
interpretation [1-2], density contour [3-4], geometric templates [5-6] and B-spline curves [7-8]. However, 
drawbacks of these methods still exist and make it difficult to achieve an efficient way for geometric features 
identification from topology results. For example, too many manual interventions are required in image 
processing, no parameterized model or geometric features can be obtained from density contours, limited 
geometric features can be represented by templates, and B-spline is expensive in the perspective of manufacturing. 
All of those shortcomings of existing geometric boundary detection methods drove us to interpret geometric 
features out of a topology design to minimize human intervention in producing a parametric CAD model. 

In this paper, the geometric features identification techniques are limited to two dimensional structures, and 
simple geometric components are used for geometric features interpretation. Once the parameterized CAD model 
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for the topology result is obtained, shape optimization and section optimization are employed to fine tune the 
identified geometry and make sure the structural performances in line with that of the topology result. The whole 
procedures yield a structural design framework of integrated topology and shape/section optimization. 
 
4. Geometric features identification 
It is important to identify the boundaries of geometric features from topology results. Although B-spline curves 
can provide nice shapes for a structure, and they are used commonly in daily life, it is very expensive, i.e. money 
and time, to manufacture them. On the other hand, more than 90% of machine parts are composed of simple 
geometric features, such as straight lines, fillets and circles. Therefore, straight lines, arcs, fillets, and circles are 
used as basic geometric features to interpret topology results and construct boundaries of geometry.  
 
4.1. Active contour method 
Normally, element-based topology results are greyscale images, or result text file for element density values. This 
research can start with either of them. The image functions in Matlab, “imread( )” and “rgb2grey( )”, can read 
images and transform them into image data. Then, the image data are processed by the active contour method 
[9-10] to yield smooth and closed boundary segment data, which are composed of coordinate values. Each of the 
closed segments represents an outer/inner boundary. 

A Matlab code based on active contour method made by Su [11] is used here to extract geometry boundaries 
from topology greyscale images. Figure 1(a) shows the initial greyscale image, and Figure 1(b) shows the 
extracted boundaries (red lines). Actually, the boundaries are expressed by a sequence of points, which are the blue 
crossed points as shown in Figure 1(c).  
 

   
(a)   Greyscale image                        (b) Extracted boundaries                        (c) Boundary points 

 
Figure 1: Image interpretation by using the active contour method 

 
4.2. Circles detection 
Among many geometric features, circle is a very common shape, and different from straight lines, arcs and fillets. 
In order to identify a circle, “roundness” is used to detect circles from other geometric features. With identified 
boundary points of a closed loop, the centroid of a geometric feature is expressed as 
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where i is the number of boundary point, and n is the total number of the boundary points of the geometric feature. 
ix  and iy are the coordinates of the i-th boundary point, and 0x  and 0y are the coordinates for the centroid point. 

 

                                                
 
            Figure 2: A portion of the boundary                                     Figure 3: Roundness values 
 

As shown in Figure 2, a small triangular is formed with two neighbored points and the centroid, whose base 
length and height can be expressed as 
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where P and A denote the perimeter and area of a closed geometric feature, respectively.  
The roundness of this geometric feature can then be defined by 

24 −= APm π                                                                                                (4) 
where m represents the roundness value of a closed geometric feature. A roundness value closer to 1.0 indicates 
that the object is approximately circle. Figure 3 shows the centroids (red circle points) and roundness values for the 
four geometric features. By setting the threshold of 0.9, circles can be identified first. 
 
4.3. Straight lines and fillets identification 
After identifying circles, it is assumed that other closed-loop boundaries are composed of straight lines and fillets 
between two lines. Since the boundaries are identified and described by points, it makes sense to interpret a straight 
boundary section as a line segment according to its curvature. Starting from the initial point, slopes of lines 
connecting following points with the initial point are calculated. If these slopes change beyond a threshold, it is 
considered that the current line ends and a new line starts from the ending point. A fillet tangent to the two straight 
lines is used to express corner boundaries.  

Figure 4 shows the geometric relationship of a fillet and two straight lines (red lines) on a portion of a 
geometric feature (blue cross points), and the relationship is formulated in Eq. (5) to calculate fillet center 
coordinates and tangent points for a given fillet radius. In Figure 4, n1 and n2 are, respectively, the numbers of two 
tangent points’ locations in a closed geometric feature. The points between the n1-th and n2-th points are used to 
approximate a fillet tangent to two straight lines. 

 

 
 

Figure 4: Geometric relationship of a fillet and a straight line 
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where (xc, yc) denotes coordinates of the fillet center point, and r is the fillet radius. (x1, y1) and (x2, y2) are two 
tangent points at both ends of the fillet. k1 and k2 are the slopes, and b1 and b2 are the y-intercept of the two lines.  

In order to estimate more accurate fillets, Eq. (6) is formulated to minimize the maximum distance from the 
initial boundary segment data points to the fillet.  
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     Once the optimal fillet radius is obtained from Eq. (6), the fillet center point and two tangent points can be 
determined by solving Eq. (5). Figure 5 shows a pentagon identified with 5 line segments and 5 fillets before and 
after fillet estimation. The blues lines are the initial boundaries, which are not smooth, and the red lines are the 
identified boundaries. The red star points on the red line are tangent points, and red star points inside of the 
boundaries are fillet center points. Arc can be detected in a same way as fillets. 

The estimation process for fillets obviously alleviates the errors between final parameterized smooth shapes 
and initial topological shapes, and makes sure the shapes to be consistent with the geometric features. At last, the 
geometries will be output in forms of parameterized CAD model with straight lines, fillet, arcs and circles, and be 
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rebuilt in Abaqus. 
 

               
 

                                              Figure 5: Before and after optimization for fillets 
 
5. Section and shape optimization for identified structure 
Although the boundary shapes are extracted from topology optimization results, the extracted geometry may not 
be considered an optimum geometry because the structural response can slightly be different from that of topology 
design. Therefore, a follow-up section or shape optimization is performed to fine tune the structural geometry for 
desired performances. The same optimization formulation used for topology optimization is better to be used for 
the section or shape optimization. During the follow-up optimization, no new geometry features will be 
introduced, but the initial features will be modified to find the optimum design. 

In the follow-up optimization, there are a couple of things to be noted. Firstly, dimensions of the CAD model 
should be fully constrained so that the entire geometry can be regenerated after its parameters are changed. 
Secondly, since not all of the parameters are necessary for optimization, a limited number of dimensions can be 
selected as design variables, and their lower/upper bounds needs to be determined. The lower/upper bounds are 
selected such that the geometry can be well defined within these bounds. Since the selection totally depends on the 
experiences of designers, this parameterization process has to be done manually, and it is the only time that 
requires human intervention in the whole design procedure. 

As the dimensions change, the structural shape and mesh change too. It causes numerical errors when we use 
finite difference method to calculate the sensitivities in optimization. In order to address the issue of mesh-related 
numerical errors, the surrogate model-based optimization approach is employed to perform the shape 
optimization. The optimization problems will be solved by the “fmincon” function in Matlab. The optimization for 
the CAD model is implemented automatically by using Matlab to execute Python scripts for Abaqus.   
 
6. Numerical examples 
In order to demonstrate the validity and capability of the proposed framework for geometric features identification, 
two numerical examples are tested here. The first example is topology result of a cantilever beam from Yi and Sui 
[12]. Section optimization is considered with beam elements. The second example is topology result of a clamped 
plate from Yi [13], and shape optimization is considered for the topology shape. The topology optimization of both 
structures was performed to minimize structural mass with a displacement constraint. 

Example 1: Beam element identification and section optimization. It was required that the displacement at the 
loading point was no larger than 0.35mm. Figure 6 shows the grayscale image of the optimal topology result, 
where the minimum mass was 1990.17kg, and the displacement at the loading point was an active constraint.  

 

             
 

Figure 6: Topology shape              Figure 7: Boundaries and roundness      Figure 8: Straight lines and fillets 
 
Figure 7 gives the boundary points and roundness values of closed boundary segments. By implementing the 

geometric features identification techniques on those boundary segments, the parameterized CAD model with 
straight lines and fillets is overlapped on top of the initial boundaries, which is shown in Figure 8. Although the 
fillets are determined by optimization, they are not used in section optimization, but used to determine the 
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approximations of straight lines. The middle lines of two closely parallel straight lines are determined one by one. 
They are crossed to each other and construct a beam element structure. As shown in Figure 9, the red lines are 
identified boundary line segments, and the green lines are beam elements of the cantilever beam. 

Since the cantilever beam is symmetric, four section areas are selected as design objectives (shown in Figure 
10). A rectangular profile is defined for each of them. Since the thickness of the beam is 1.0mm, the design 
variables are actually the heights of the rectangular sections of Sec1, Sec2, Sec3 and Sec4 separately. A lower 
bound of lb = [0.1, 0.1, 0.1, 0.1] (mm) and an upper bound of ub = [10, 15, 10, 15] (mm) are given for the design 
variables. Since the mesh on beam elements does not change during optimization, no surrogate model is required, 
and the section optimization is conducted directly. The optimum point is found at x* = [6.12, 7.81, 3.71, 6.71] 
(mm). The structural mass is 1981.13kg, and the displacement at the loading point is 0.35mm. Displacement 
contour of the beam with optimal sections is shown in Figure 11. 

 

              
 
                  Figure 9: Beam element structure                                Figure 10: Design objectives                 
 

 
 

Figure 11: Optimal sections 
 

Example 2: Plate shape identification and shape optimization. The displacement at the middle of the plate 
along the loading direction was required to be no larger than 0.74m. The result text file of the optimal density 
values is used for image interpretation. Figure 12 shows the topology shape (in black and grey) read by Matlab and 
boundaries (in red) detected by the active contour method. The total mass was 5.31kg, and the displacement at the 
middle was 0.74m. The exact boundaries are identified and shown in Figure 13, where the fillets and arcs are 
already optimized. The CAD model is rebuilt in Abaqus and the fully constrained geometry is shown in Figure 14. 
 

                     
 

    Figure 12: Topology shape             Figure 13: Identified boundaries          Figure 14: Fully constrained CAD model 
 

Since the geometry is fully symmetric and the dimensions are related to each other, the dimensions for the short 
fillet, x-cordinate and y-cordinate of the fillet center point, and fillet radius, respectively, are considered as design 
variables x1, x2 and x3, which are marked as pink lines in Figure 15. The shape optimization with a displacement 
constraint is performed on the identified geometry. The Kriging surrogate model is utilized to approximate the 
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relationship between three design variables and the displacement at the middle point of the plate. The optimal 
design is found at x*=[2.01, 4.14, 0.1] (m), where the structural mass is 5.00kg, which is reduced by 5.84% 
compared to the topology result, and the displacement at the middle point  is 0.74m. Figure 16 gives a full 
dimensions of the optimal shape of the identified geometry. The displacement contour of the optimal shape is 
shown in Figure 17.  

             
 
  Figure 15: Design variables              Figure 16: Optimal shape                Figure 17: Displacement contour                 
 
7. Conclusions 
In this paper, 2D geometry features are identified from topology optimization results, followed by section or shape 
optimization. Both numerical examples indicate that the proposed techniques for geometric features identification 
are valid and capable to interpret topology results. In addition, the proposed structure design framework shows that 
topology and shape/section optimization can be integrated to effectively obtain structural designs for 
manufacturing. However, some future work needs to be considered, for example, parameterizing boundary 
conditions to make process fully automatic, and applying this integration framework into 3 dimensional structures. 
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