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1. Abstract  

A design concept is proposed called 'Data-inspired Reliability Design', where measured data are aggressively used 

to improve the accuracy of structural reliability design, and surrogate models suitable for this design concept are 

investigated. Since the amount of measured data is limited due to the cost of sensors, the structural responses that 

are not measured should be predicted using the measured data. To best use the measured data, the hybrid surrogate 

models generated using both the measured data and simulation results are applied to predict structural responses in 

this study. For the hybrid models, the discrepancy between the measured data and simulation results is 

approximated using response surface methodology. The Gauss process model and an artificial neural network 

were used as the response surface, and the suitability of the response surfaces were checked for use as virtual 

sensors. To validate the hybrid surrogate models, the structural responses of a welded structure were predicted 

using both the measured responses and those analyzed using a simulation. As a result, the predicted responses 

agreed well with the measured ones. It can therefore be concluded that using the hybrid surrogate models is one 

way to predict structural responses instead of using sensors in the proposed design concept. 
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3. Introduction 

Today, pieces of infrastructure include many sensors for collecting operational and environmental data. The 

collected data are then used, for example, to control infrastructure machinery more efficiently, to determine the 

maintenance interval of parts appropriately, and to design more reliable machinery. As the number of sensors 

increases, we can gain more benefits from the collected data, because the amount of information obtained from the 

data increases. On the other hand, the increase in the number of sensors raises the initial cost of machinery. It is 

therefore better to obtain much information about operational condition and environment with the fewest sensors. 

To increase the amount of information without increasing the number of sensors, the surrogate model that predicts 

responses to be measured can be used as a virtual sensor. 

Although the surrogate model should be accurate enough to be used as a virtual sensor, an accurate surrogate 

model is difficult to generate with few sensor outputs. To overcome this difficulty, we can employ the method for 

generating a surrogate model by using both measured outputs and simulation results. According to this hybrid 

modelling method, the discrepancy between real output and simulated output is explicitly included in the model of 

target output [1][2][3], so accordingly the target out is predicted by adding the discrepancy to the simulation result. 

The discrepancy is usually approximated with the Gauss process (GP) model [4], which is a response surface 

model, hence the parameters in the GP model, called hyper-parameters, are determined with known discrepancies. 

Since the GP model is based on a stochastic framework, the hyper-parameters can be determined by using the 

Markov chain Monte Carlo method (MCMC). The estimation of an unknown response with the GP model is, 

however, computationally demanding; hence, this high computational cost limits the usage of the GP model. In 

addition to the GP model, an artificial neural network is therefore applied to the approximation of the discrepancy 

in this study. Once an artificial neural network has been learned, a target response can be estimated quickly by 

using the learned neural network. 

In the following sections, first, the design concept is introduced where the collected data can be effectively 

employed, and then a procedure is described for generating the GP model and estimating unmeasured responses 

with a hybrid modelling method. Furthermore, we propose a procedure for using an artificial neural network to 

interpolate the discrepancy instead of the GP model. These procedures are applied to predict the strains occurring 

on a typical welded structure, and the approximation accuracy is investigated for three validation scenarios.  

 

4. Data-inspired Reliability Design 

When developing a product, the structural reliability of the product is usually designed in accordance with a design 

standard for the product. The design standard provides the safety margin for structural reliability, such as the safety 

margin for fatigue resistance; hence, the structure of the product is designed so that the product is within the safety 

margin. If operational and environmental conditions, for example, applied loads, are uncertain for the product to be 

designed, the safety margin for structural reliability is set to a large value. As a result, the developed product will 
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be inappropriate for a sustainable society because it is too heavy, and heavy products need a large amount of 

material and energy for manufacturing and operating them. A decrease in the uncertainty of the conditions 

therefore leads to the development of products that are appropriate for a sustainable society. A better way to 

decrease the uncertainty is to clarify the uncertain conditions with the data collected during the bench test, test 

operation, and field operation. By repeating the data collection and improving the design standard for structural 

reliability, the reliability of products can be improved continuously as shown in Figure 1. We call this design 

concept "data-inspired reliability design". 

The data-inspired reliability design can be applied to the reliability design of the products (such as wind turbines, 

construction machinery and trains) for which operational and environmental data are monitored. Figure 2 shows an 

example of the data analytics performed to confirm the safety margin for fatigue resistance of a wind turbine. The 

fatigue damage of the welded joints in the tower of the wind turbine was estimated with measured strain data, and 

then the estimated damage was compared with the damage that had been evaluated in accordance with a design 

standard. Since strain sensors are mounted on the tower at two different heights, the structural reliability of the 

tower was evaluated there. If the number of sensors is increased, the structural reliability can be evaluated at other 

positions. The number of sensors, however, increases the cost of products; hence, the number of sensors used for a 

product has to be limited. To overcome this limitation, virtual sensor technology, namely, surrogate models, can be 

used for collecting data to supplement real sensors. 

 

5. Surrogate models 

 

5.1. Bias-corrected model 

The hybrid surrogate model using both measured data and simulation results is applied to predict unknown 

responses. There is generally a discrepancy between the output of computer simulation and measured output 

because simulation models approximate the target physical phenomenon and the measured output includes 

measurement noise. When formulating the prediction model of a target phenomenon, the measurement noise is 

usually modelled as a Gaussian noise with zero mean. On the other hand, for the discrepancy caused by model 
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Figure 1: Data-inspired reliability design 
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Figure 2: Fatigue damage estimated with the collected data for wind turbine 
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approximation, methods for modelling the discrepancy as a bias have been proposed in the last decade. In 

accordance with these methods, the real output of the target phenomenon that does not include measurement noise 

is formulated as 

 δyy MR    (1) 

where y
R
 and y

M
 are the real and simulation outputs, respectively, and δ is the bias between the two outputs. When 

the outputs are strains that have to be evaluated at some positions and for some applied loads, Eq. (1) could be 

rewritten as follows. 

      FxFxFx ,,, δyy MR    (2) 

where x and F are respectively the vectors of positions and applied loads. 

 

5.2. Output prediction using Gauss process model 

To estimate the real output y
R
(x, F), two response surfaces for simulated outputs y

M
(x, F) and bias δ(x, F) were 

constructed by using the GP model. The mean and covariance of the applied GP model are 

   xm   (3) 
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where β, σ, and ωj are the hyper-parameters. In this study, these parameters were adjusted by using the MCMC 

method. Bayesian analysis was also applied to predict the expected mean of real output because the uncertainty of 

the hyper-parameters should be considered for the prediction. The whole prediction process proposed in this study 

is as follows. 

 

1) Generate the GP response surface for interpolating simulated outputs y
M

(x, F) 

2) Generate the GP response surface for interpolating bias δ(x, F) 

3) Obtain posterior distributions for the hyper-parameters of the bias response surface by using Bayesian analysis 

4) Obtain the expected mean of real output from the posterior distributions of the hyper-parameters and the bias 

 

If the computational cost of the simulation is not expensive, we can skip prediction process step 1. The expected 

mean of real output was calculated with 
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where δ
(i)

(x) is a sample of the bias drawn by using Bayesian analysis in step 4, and N is the number of samples. 

The same as the expected mean of the real output, the expected mean of the bias can be estimated with 
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5.3. Output prediction using artificial neural network 

Artificial neural networks can be also used to predict the real response in accordance with the model bias 

correction; that is, the response surfaces of the simulated output and the bias can be generated using artificial 

neural networks as well as the GP model. However, conventional neural networks sometimes fit only teacher data, 

hence the generated response surface does not become smooth enough to use it, especially for the interpolation of 

the bias. The Bayesian framework for learning neural networks [5][6] is therefore applied when generating the 

response surfaces by the neural networks in this study. On the basis of the Bayesian framework, the objective 

function to be minimized for the learning of neural networks is formulated as follows. 

 DW EEM     (8) 

where ED is error sum of squares and Ew is a generalization term that expresses the prior information for the 

weighing coefficients of the neural network to be learned. The prior information introduced here means that the 

response surface should be smooth; therefore, the weighing coefficients should preferably be small values.   and 

  in Eq. (8) are hyper-parameters that are determined by maximizing the likelihood of the hyper-parameters. 
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After the development of a formula, the equations for maximizing the likelihood are 
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where   is the effective number of the weighing coefficients and means how many coefficients are accurately 

determined with teacher data. Given that the eigenvalues of matrix DE  are a (a = 1～k),   can be 

calculated by 

 
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
k

a a

a
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
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By repeating the learning of the neural network and the update of the hyper-parameters sequentially, the smooth 

response surface of the bias was generated in this study. 

 

6. Example 

 

6.1. Measurement and simulation of typical welded structure 

A welded structure that includes the weld joints typically used in construction machinery was designed and 

experimentally produced. A load of 100 kN was applied to the produced welded structure, and strains were 

measured with strain gauges near a weld line as shown in Figure 3(a). This static load test was performed twice, 

and the strains were accordingly measured twice. Although the strains were measured at a static load of 100 kN, 

the strains measured at the other applied loads were needed to investigate the prediction accuracy of the bias 

correction model in Eq. (2). A virtual load history shown in Figure 4 was therefore assumed, and then the measured 

strain histories caused by the load history were generated by using the liner relationship between the applied load 

and the strains. In addition, the finite element model of the typical structure was also prepared to calculate strains at 

the points where the strain gauges were placed. The finite element model shown in Figure 3(b) was composed of 

shell elements, each of which was rectangular and had four nodes. Numbers 1 to 6 in Figure 3 show the points 

where strains were measured on the produced structure. The measured and simulated strains were then utilized to 

predict real strains y
R
(x, F) at the points where strains were not measured by using the procedure described in 

section 5. The measured and simulated strain values for this prediction are shown in Figure 5. Since the measured 

strains in Figure 5 were generated using the two test results, two measured values are shown at a position and a 

load. Notice that there is obviously a model bias caused by incomplete modeling because the simulated strains are 

larger than the measured ones except for one point. Despite this discrepancy, the finite element model shown in 

Figure 3(b) was generated in accordance with the International Institute of Welding recommendations. 

 

6.2. Prediction of real strain and bias with GP model 

In the case of the GP model, the two strains measured at the same position and load were averaged, and 
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(a) Experimentally produced structure                                               (b) Finite element model 

Figure 3: Illustrative welded structure  
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Figure 4: Applied load history 
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(a) After 0.05 seconds (applied load 44 kN)                     (b) After 0.15 seconds (applied load 86 kN) 

Figure 5: Simulated and measured strains  

 

the averaged value is regarded as a measured strain to predict real strain y
R
(x, F). To validate the prediction 

accuracy of the bias-corrected model in Eq. (2), not all the measurement points were used to predict the real strains. 

That is, four out of the six points were selected and used to model the real strain, and then the other two points were 

used to validate the generated model. Figure 6 shows the expected mean of bias δ(x, F) defined in Eq. (7) and the 

predicted real strain y
R
(x, F) when selecting Nos. 2, 3, 4, and 5 for the modeling.  Note that the expected mean of 

the bias is smooth, hence the predicted real strain represents the feature of the simulated strains, especially for the 

positions where strains are not measured. By comparing the predicted and measured strains at the points for 

validation, the predicted strains are respectively 118 % and 119 % of the measured strains for positions Nos. 1 and 

6. On the other hand, the simulated strains are respectively 120 % and 148 % of the measured strains for positions 

Nos. 1 and 6 as shown in Figure 7. It is therefore clear that the bias-corrected model with the GP model works well 

for predicting the real strains. 

 

6.3. Prediction of real strain and bias with neural network 

In the case of the artificial neural network, all the measured values were used to generate the response surface of 

bias δ(x, F). Figure 8 shows the resulting response surfaces of bias δ(x, F) and the predicted real strain y
R
(x, F). It 

can be seen that the response surface of the bias obtained using the neural network is smooth and so is the expected 
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(a) After 0.05 seconds (applied load 44 kN)                     (b) After 0.15 seconds (applied load 86 kN) 

Figure 6: Strain and bias predicted with GP model 
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Figure 7: Verification of predicted strains 
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(a) After 0.05 seconds (applied load 44 kN)                     (b) After 0.15 seconds (applied load 86 kN) 

Figure 8: Strain and bias predicted with neural network 

 

mean of the bias obtained using the GP model. While the absolute value of the bias when using the neural network 

is larger than that when using the GP model at 50mm to 100mm positions, both response surface models generate 

almost the same bias near the measurement positions. 

 

7. Conclusion 

Surrogate models can be used as virtual sensors for monitoring the operation condition of infrastructures. Methods 

for generating a surrogate model using measured data and simulation results have been applied to several 

engineering examples in the last decade. This hybrid surrogate model is accurate enough to be used as virtual 

sensors and therefore was used to predict structural responses, namely strains, in this study. To investigate the 

accuracy of prediction in unmeasured strains, a typical welded structure was experimentally produced to obtain the 

measured strains, and the numerical analysis of the welded structure was also conducted to obtain the simulated 

strains. When predicting the strains, the discrepancy between the measured and simulated strains was 

approximated with the response surfaces, namely the GP model and the neural network. In the results of this 

investigation, the predicted strains agreed well with the measured ones. It can therefore be concluded that the 

hybrid surrogate model can work as virtual sensors. 

 

8. References 

[1] Bayarri, M. J., Berger, J. O., Sacks, J., Cafeo, J. A., Cavendish, C. H., Lin, C. H., and Tu, J., A Framework for 

Validation of Computer Models, National Institute of Statistical Science Technical Report, 162, 2005. 

[2] Xiong, Y., Chen, W., Tsui, K. and Apley, D. W., A Better Understanding of Model Updating Strategies in 

Validating Engineering Models, Computer methods in applied mechanics and engineering, 198, 1327-1337, 

2009. 

[3] Kennedy, M. C. and O’Hagan, A., Bayesian Calibration of Computer Models, Journal of the Royal Statistical 

Society, Series B 63(3), 425-464, 2001. 

[4] Rasmussen, C. E. & Williams, C. K. I., Gaussian Processes for Machine Learning, The MIT Press, 

Cambridge, 2006. 

[5] Mackay, D. J. C., A Practical Bayesian Framework for Backpropagation Networks, Neural Computation, 4, 

448-472, 1992. 

[6] Takeda, N., Response Surfaces of Neural Networks Learned Using Bayesian Framework and Its Application 

to Optimization Problem, Journal of Computational Science and Technology, 3(1), 315-326, 2009. 


