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1. Abstract  
The existing direct sensitivity analysis of optimal structural vibration control based on Lyapunov’s second method 
is computationally expensive when applied to finite element models with a large number of degree-of-freedom and 
design variables. A new adjoint sensitivity analysis method is proposed in this paper. Using the new method the 
sensitivity of the performance index, a time integral of a quadratic function of state variables, with respect to all 
design variables is calculated by solving two Lyapunov matrix equations. Two numerical examples demonstrate 
the accuracy and efficiency of the proposed method. Finally, we use the adjoint sensitivity analysis scheme to 
solve a topology optimization problem. 
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3. Introduction 
In time domain, there is a classic problem formulation of passive structural vibration control that deals with the 
dynamic system disturbed by initial conditions. The objective is to find design parameters of the damped vibration 
system that minimize the performance index in the form of time integral of the quadratic function of state variables 
(displacement and velocities, e.g. see Eq.(5)). This performance index can be evaluated by Lyapunov’s second 
method [1]. 
Based on the Lyapunov equation, the evaluation of performance indices are simplified into matrix quadratic forms 
and do not require the time domain integration. Parameter optimization problems with a quadratic performance 
index have been solved by this method [2~8]. Wang et al. [9] applied the Lyapunov equation to solve the transient 
response optimization problem of linear vibrating systems excited by initial conditions. In their work, the 
Lyapunov equation was expanded to a set of linear equation and direct sensitivity was carried out by use of the 
same system of linear equation. The computational effectiveness of the method is illustrated by applying it to the 
classical vibration absorber and to a cantilever beam carrying an absorber at its midpoint. Du [10] applied the 
Lyapunov equation to obtain the optimum configuration of dynamic vibration absorber (i.e., DVA) attached to an 
undamped or damped primary structure. The Lyapunov equation is also used in other fields of optimal design.  
In this paper, we consider one case of passive control optimization problem, that is, to minimize an integrated 
quadratic performance measure for damped vibrating structures subjected to initial conditions. The goal of this 
paper is to present an adjoint sensitivity analysis method considering the above mentioned objective function 
based on Lyapunov’s second function. The results indicate the potential of application of the proposed method to 
topology optimization under the special time domain criterion. 

 
4. Application of Lyapunov’s second method to optimize transient response of mechanical systems 
Consider a viscously damped linear vibration system governed by the equation: 

0KuuCuM =++ &&&                                                                    (1) 
where M(N×N) is the mass matrix, C(N×N) is the damping matrix, K(N×N) is the stiffness matrix, and u(N×1) is 
displacement vector. N is the structural degree of freedoms.  
Assume the system is excited by initial displacements or velocities. The design problem is to find in M, K and C 
matrices to minimize a performance matrix in the form 
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where, ( ) uQuuQu &&& &uuuuq TT, += is a quadratic function of u  and u& . Transient dynamic responses have to be 
performed to evaluate the objective function. Direct or adjoint methods can be applied to evaluate the response 
sensitivity required for evaluation sensitivity of the performance. Alternative, if we replace the upper bound of 
integration to infinite, we can use Lyapunov’s second method to evaluate the performance without performing 
transient dynamic response analysis. 
To apply Lyapunov’s second method to this system, it is necessary to rewrite Eq.(1) in the state space form 
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The matrix A is (2N×2N). The vector X is (2N×1). Structural design parameters such as mass density, damping 
ratio and spring stiffness are contained in the matrix A. The optimization problem is to choose these parameters to 
minimize the performance measure J defined by 
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for a given initial excitation X(0). In Eq.(5), Q(2N×2N) is a positive semi-definite symmetric weighting matrix 
and t denotes time. According to Lyapunov theory of stability, for an asymptotically stable system, there exist a 
symmetric positive semi-definite matrix P(2N×2N) satisfying 

QPAPA −=+T                                                                   (6) 
Eq.(6) is the well-known Lyapunov equation. Based on the Lyapunov’s second equation, the Eq.(5) can be further 
simplified as 

( ) ( )00 TPXX=J                                                                    (7) 

That is to say, to minimize J in Eq.(5) is equivalent to minimize ( ) ( )00 TPXX , where ( )0X is the initial state 
vector and the unknown symmetric matrix P can be obtained by solving Eq.(6).  
 
5. Sensitivity analysis scheme 
To apply gradient-based optimization method to solve the above optimization problem, sensitivity (gradient) of the 
objective functions with respect to the design variables is needed. The adjoint method will be developed in this 
paper. The new method just needs to solve the Lyapunov function twice to obtain the sensitivities with respect to 
all the design variables. 
For ease of presentation of the new sensitivity analysis scheme, we adopt Du’s approach of using Kronecker 
product and column expansion to expand the Lyapunov equation as a system of linear equation. The column 
expansion of matrix V is defined as a vector that stacks all columns of this V matrix. For example, for the 3×3 
matrix V 
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the column expansion cs(V) of V is 

( ) [ ]T333231232221131211 VVVVVVVVVcs == VV                          (9) 

Note that cs(V) is a 9×1 vector. The operator cs(*) refers to the expansion operation. For an N-dof system, using 
the Kronecker product, (6) can be written as 

QPG −=                                                                        (10) 

where ( )PP cs= , ( )QQ cs=  and the matrix G can be obtained from the matrix A by Kronecker product. That 
is  

( )TT AEEAG ⊗+⊗=                                                            (11) 
and E(2N×2N) is an identity matrix with the same size of A. Now, by direct calculation, the objective function in 
Eq.(7) can be written as 

PST=J                                                                             (12) 
where 
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S also is a positive semi-definite symmetric matrix as matrix Q. From the Eq.(10), the term
kd∂

∂P
can be obtained 

by 
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Thus sensitivity can be expressed as 
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The right hand of Eq.(15) can be rewritten as 

( ) ( ) k

kk dd
J DλXPX TT 00 =

∂
∂

=
∂
∂

                                                      (16) 

where 
1TT −−= GSλ                                                                         (17) 
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Note that λ  and kD  are the column expansion of matrices λ  and kD , respectively. 
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λ , the adjoint matrix, can be obtained by solving the above Lyapunov matrix equation. kD can be also computed 
by 
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Finally, the sensitivity of the objective function with respect to the design variable can be expressed as 
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For the case X(0) independent of design variables, the Eq.(21) can simplified as 
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6. Numerical example 
Two examples are presented in this section. The first example is used to demonstrate the accuracy and efficiency of 
the proposed methods. The optimal support location is solved as a topology optimization problem in the second 
example. 
 
6.1. Example 1 
In this example, we consider a clamped-free beam (3m×0.02m×0.02m) attached with several identical damped 
springs (along Y direction). The beam material is linear elastic with the elastic modulus 2.1×1011Pa and mass 
density 7850Kg/m3. The spring stiffness ks is to be determined (N/m), and the damping coefficient is 103N·s/m. 
Figure 1 shows the beam model used in this example. Specially, the beam is uniformly meshed into 50 2-node 
beam elements. Each node has 2 DOFs (lateral displacement and rotation about Z-axis). Five equally spaced 
damped spring supports are considered. The initial displacements and velocities of all nodes are zero and 10m/s 
respectively. The stiffness k of each spring is chosen as the design variable. Thus, there are 5 design variables. 
Firstly, we compare the sensitivity results from three methods, central difference method, adjoint method and 
direct method to validate the proposed adjoint method.  
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Figure 1: The beam model with 5 damped springs 
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The objective function is 
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where yi is the Y-direction displacement of the ith node of the beam, R is the total number of the free nodes of the 
beam.  
To study the effect of step size in central difference analysis, we calculate the approximation of sensitivity of 
spring stiffness of the spring at right hand of beam at ks=105N/m for three different step sizes. The results are 
shown in table 1. We chooseΔ ks=100N/m for further study in this example. 
 

Table 1: Sensitivity results at ks=1.0×105N/m from different step sizes 
 

Step size 104 103 102 
Sensitivity result -2.4858×10-11 -2.4715×10-11 -2.4714×10-11 

 
The sensitivity results of the objective function with respect to ks of each spring at ks=1.0×105N/m from central 
difference method, adjoint method and direct method are shown in figure 2 and are represented by the black 
crosses, red squares and blue rounds, respectively. The results show that the adjoint method obtains identical 
results with the central difference method and direct method.  
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Figure 2: Sensitivity results of the stiffness k of each spring from three methods 
 

In this paper, the CPU time results are the average values of CPU time of 10 repeated analyses. The computer used 
in this paper is i7-3770 3.4GHz, Windows 7. 
Now, we compare the CPU time of direct method and adjoint method. The CPU time results of these two methods 
are summarized in table 2. The results show that total CPU time of the sensitivity analysis process of adjoint 
method is less than direct method, especially when the problem has large number of DOFs. TA is the CPU time of 
the sensitivity analysis process of adjoint method, and TD is the CPU time of the sensitivity analysis process of 
direct method. 
 

Table 2: CPU time of two methods vs. number of DOFs in the model 
 

Number of 
DOFs 

CPU time (s) TA/TD TA(adjoint) TD(direct) 
100 0.091 0.232 39.34% 
600 22.095 61.802 35.75% 

 
6.2. Example 2 
Topology optimization problems always have large numbers of design parameters. We construct a topology 
optimization problem to test the new sensitivity analysis methods. In this example, we consider a 1m×1m×0.01m 
plate attached with several identical damped springs(ks=106N/m, cs=100N·s/m). One edge of the plate is clamped 
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and other three edges are free. The material of the plate is linear elastic with elastic modulus 2.1×1011Pa, Poisson 
ratio 0.3, and mass density 7850Kg/m3. The initial velocity of Z direction of all the free nodes of plate is 10m/s. 
The design problem is to decide the optimized location of H damped springs to minimize a criterion defined below. 
We formulate this problem as a topology optimization problem. This is achieved by introducing an artificial 
density variable to describe the spatial distribution of the damped springs and use interpolation model of SIMP to 
obtain 0-1 design. Specifically, an identical potential damped spring (along Z direction) is placed between every 
free nodes and the ground.  
Set a virtual density iρ  to every spring as the design variable. iρ  is a continuous variable, and [ ]1,minρρ ∈i . 

We introduce an artificial relation between density ( iρ ) and the parameters of the damped springs. 

0KK l
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ii ρ=                                                               (24) 
where l is the penalty parameter. In this example, l is chosen as 1.2. The analysis model is shown in Figure 3, where 
the purple lines are the dumped springs and the blue square elements are the 4-node square plate elements (shell63 
in Ansys). Each node of the element has 3 DOFs, zu , xθ  and yθ . The element size of the plate is 0.1m (there are 
110 free nodes). The analysis model has 330 DOFs and 110 design parameters. The topology optimization 
problem can be expressed as 
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                10 min ≤≤< iρρ  
where H specifies the material volume available for the damped springs. Here we assume each spring, if any, uses 
material volume 1, H will be the number of damped springs in the final optimum design. zi is the Z-direction 
displacement of the ith node of the plate. The model has 110 free nodes, so the objective function concerns the 
displacements of all the free nodes. It should be noted this example mainly serves to compare different methods of 
sensitivity analysis through solving the topology optimization problem described by Eq.(25).  
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Figure 3: The analysis model in topology optimization 
 
The CPU time of solving processes of adjoint method and direct method is summarized in table 3. The computing 
time of adjoint method is much shorter than the computing time of direct method. 
 

Table 3: CPU time of sensitivity analysis of two methods 
 

 Adjoint Direct 
CPU time (s) 10.575 181.130 

 
Finally, we use above mentioned four sensitivity analysis schemes to solve the topology optimization described in 
Eq.(25). H is set to 2. Figure 4 shows that optimization using different sensitivity analysis methods have identical 
iteration histories and obtain same optimized designs. The CPU time of solving processes of topology optimization 
problem using different sensitivity analysis methods is summarized in table 4. The optimization process using 
adjoint method just takes about 10 minutes which is far less than the CPU time of other one. 
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Figure 4: Iteration histories of the objective function of optimization process: (a) Ajoint method; (b) Direct method  
 

Table 4: CPU time of optimization processes using different sensitivity analysis methods 
 

 AVMF DVMF 
CPU time (s) 636.852 10886.824 
   

 
7. Conclusion 
A new adjoint sensitivity analysis method for the integral square performance index is proposed in this paper. The 
new approach requires the solutions of two Lyapunov equations only, one for the performance index and one for 
the adjoint vector. In contrast, direct sensitivity analysis requires the solution of a Lyapunov equation for each 
design variable. This improvement in computational efficiency  
makes the approach applicable to optimal design problem with a large number design variable. The accuracy and 
efficiency of the proposed method are demonstrated by two numerical examples. 
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