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1. Abstract  
This paper provides an overview of the challenging class of structural optimization problems with 
complementarity conditions, generally known as a “mathematical program with equilibrium constraints” (MPEC). 
Complementarity, mathematically defined by the perpendicularity of two sign constrained vectors, describes such 
common mechanical behaviour as elastoplasticity and contact conditions. The MPEC is in effect the inverse 
counterpart of a state problem formulated as a “mixed complementarity problem” (MCP), and is moreover far 
more challenging to process since an MPEC is in general nonsmooth and nonconvex. We briefly describe a 
promising class of solution methods, all based on some regularization technique, to convert the MPEC into a 
standard nonlinear programming (NLP) problem, and illustrate its application for the optimal design of 
engineering structures. 
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3. Introduction 
Complementarity (the requirement that two nonnegative vectors are orthogonal) is a typical and recurrent 
mathematical feature in the nonlinear analysis of structures, e.g. to represent elastoplasticity and contact-like 
conditions. The resulting state problems lead to instances of mathematical programs known generally as “mixed 
complementarity problems” (MCPs) [1] for which, under certain conditions (e.g. definiteness of some key 
matrices), can be efficiently solved. However, the inverse problem that for example arises in structural 
optimization under complementarity conditions is far more challenging to process since the underlying 
mathematical programming problem, known as a “mathematical program with equilibrium constraints” (MPEC) 
[2], is nonsmooth and/or nonconvex. 
We introduce the concept of complementarity, and review the state problem and its solution before presenting the 
generic formulation for structural optimization under complementarity constraints [3-7]. We then provide an 
overview of a promising class of solution methods that can be used to solve the resulting MPECs [2]. These all 
involve application of some regularizing technique followed by conversion of the MPEC into a standard nonlinear 
programming (NLP) problem. Finally, we give two illustrative examples to illustrate this approach. 
 
4. Complementarity Conditions in Engineering Mechanics 
Various engineering state problems can be formulated as a standard MCP [1] which, in general, consists of three 
pieces of basic information, namely lower bounds l

l ℜ∈z , upper bounds l
u ℜ∈z  and functions lℜ∈)(zY . The 

aim is to 
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where ∞≤≤≤−∞ ul zz  and Y(z) are continuously differentiable. As an illustration, we briefly review in the 
following two engineering mechanics problems (see e.g. [7]) formulated as MCP (1); one involves elastoplasticity, 
the other contact conditions with complementarity conditions schematically shown in Fig. 1.  
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Figure 1: Complementarity conditions (a) softening material, (b) contact forces, (c) friction law. 
 
4.1 Analysis of Elastoplastic Structures 
The governing state problem for the holonomic (path-independent) analysis of structures (suitably discretised into 
n number of elements, d degree of freedoms, m generalized stresses/strains and y yield functions) with inelastic 
material properties can be cast as an MCP in variables (Q,u,z) as follows [4]: 
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Clearly problem (2) is an instance of MCP (1), where the first two relations in Eq.(2) correspond to the first 
condition in Eq.(1) with ∞≤≤ z0 , 0wv ≥=  and 0k = . 
Physically, the first equation in MCP (2) describes linear equilibrium between the externally applied forces 

dℜ∈fα  and the generalized stresses mℜ∈Q  through a constant compatibility matrix dm×ℜ∈C , where α  and 
dℜ∈f  denote a positive load scalar and a basic force vector, respectively. The second equation expresses the 

relationship between stresses Q and the elastic strains defined as mℜ∈−pq , where mm×ℜ∈S , mℜ∈q  and 
mℜ∈p  are, respectively, the conventional (unassembled) elastic stiffness matrix, generalized strains written in 

terms of nodal displacements dℜ∈u , and generalized plastic strains. In the third and final relation, an associative 
flow rule prescribes the plastic strains p as functions of plastic multipliers yℜ∈z , where ym×ℜ∈N  collects the 
normal directions to all piecewise linear (PWL) yield hyperplanes [8] in Fig. 1a. The yield functions yℜ∈w  
mathematically describe the PWL yield model of this Fig. 1a in terms of Q and z, where yy×ℜ∈H  and yℜ∈r  
denote a hardening/softening matrix and a plastic limit vector, respectively. Finally, the complementarity 
condition 0T =zw  (describing a componentwise relationship 0≥jw , 0≥jz  and 0=jj zw  for j = 1 to y) 
between the two positive sign constrained vectors 0w ≥  and 0z ≥  implies either elastic ( 0>jw  and 0=jz ) or 
plastic ( 0=jw  and 0>jz ) behaviour, and also allows reversal (holonomy) of plastic strains  
An elastoplastic analysis maps out the complete load versus displacement responses of the inelastic structure by 
collecting the resulting variables Q, u and z obtained from a series of MCP (2) solves under specified increasing 
values of load multiplier α . MCP (2) can be processed directly using, for instance, the industry standard 
complementarity solver PATH [1]. For computational and modelling convenience PATH is often called from 
within some mathematical programming environment such as GAMS (an acronym for “general algebraic 
modelling system”) [9]. 
 
4.2 Analysis of Structures with Frictional Contacts 
We consider rigid perfectly plastic structures with c unilateral frictional contacts as shown in Figs. 1b-c. The state 
problem can be formulated as the following MCP in variables (α ,Q,u& , z& ,rn,rt, ξ& ) [7]:  
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Solution of this MCP (3) provides one set of response variables α ,Q, u& , z& ,rn,rt, ξ&  for the structural system 
considering rigid perfectly plastic material properties and nonassociative frictional contact conditions. 
The first relation represents a (normalised) positive dissipation produced by f and displacement rates dℜ∈u& . 
Linear equilibrium between fα , Q and the two contact forces in the normal c

n ℜ∈r  and tangential c
t ℜ∈r  

directions is given in the second relation, where dc
tn ,

×ℜ∈CC  are the corresponding compatibility matrices at the 

contacts. Compatibility between u&  and the plastic multiplier rates yℜ∈z&  is described by the third relation. The 
fourth relation indicates the compatibility between tangential displacement rates uC &t  along the contact interface 

and the sliding rates ξV &
t , where c2ℜ∈ξ&  and cc

t
2×ℜ∈V  are sliding multiplier rates and a constant matrix, 

respectively. Finally, the three complementarity conditions between (i) w and z& , (ii) c
c

2ℜ∈π  and ξ& , and (iii) 
c

n ℜ∈π  and rn enforce a perfectly plastic material law, the assumed frictional contact model (shown in 

Figs. 1b-c) and nonpenetration at contact interfaces, respectively [7]. cc
n

2×ℜ∈V , cc
n

2×ℜ∈N  and cc
t

2×ℜ∈N  are 
appropriate transformation matrices. 
 
5. Optimization with Complementarity Conditions 
We now consider the inverse problems corresponding to MCPs (2) and (3) that arise in the optimal design of 
structures with inelastic material properties and/or frictional contact conditions. The aim of such a design is to 
automatically determine the minimum and safe material distribution (i.e. typically represented by unknown 
cross-sectional areas A) of the structural members such that the predefined physical and material requirements are 
simultaneously satisfied. This involves the formulations and solutions of “nonstandard” optimization problems, 
known as MPECs [2], where the so-called “equilibrium constraints” are, in our case, complementarity constraints 
expressing certain intrinsic structural behaviors, such as the ones in MCPs (2) and (3). 
 
5.1 Optimization of Elastoplatic Structures 
The MPEC in variables (A,Q,u,z) that describes the optimal design of elastoplastic (softening) structures is [4]  
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MPEC (4) minimizes the total weight/volume V(A) of the structure (directly related to the total cost) subject to the 
constraints given by the state problem in MCP (2), where the stiffness matrix S, the normality matrix N, the 
softening/hardening matrix H and the vector of yield limits r are written in terms of the unknown cross sectional 
areas A that are bounded within available lower Alo and upper Aup size limits. Technological and displacement 
constraints [3,4] impose specific conditions to accommodate, for instance, the requirement of identical member 
sizes for certain groups of structural members and displacement limits at some specified locations, respectively. 
 
5.2 Optimization of Structures with Frictional Contacts 
The inverse or optimal design problem to MCP (3) aims to obtain a minimum volume solution for rigid perfectly 
plastic structures with frictional contacts. The governing MPEC formulation in variables (A,Q,u& , z& ,rn,rt, ξ& ) [3] is 
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in which matrix N and vector r are functions of the area variables A. 
 
5.3 MPECs – An Overview 
The systematic study of MPECs has increasingly attracted research interest due to the fact that, in addition to being 
theoretically difficult and computationally challenging, MPECs find numerous applications in economic and 
engineering problems involving equilibrium systems [10]. An MPEC is an optimization problem, in which some 
or all constraints are defined by a parametric variational inequality or complementarity system [2]. The most 
prominent feature of an MPEC, and one that distinguishes it from a standard nonlinear programming (NLP) 
problem, is the presence of complementarity constraints. These constraints classify the MPEC as a nonlinear 
disjunctive (or piecewise) program. Consequently, besides the common issues associated with general NLP 
problems, the MPEC carries with it a “combinatorial curse” – a standard feature of all disjunctive problems. 
There are three main reasons why an MPEC is difficult to solve [2]. First, the complementarity constraints are 
disjunctive. As is well-known from the integer programming literature, disjunctive constraints such those 
embodied by the complementarity condition (e.g. either wj = 0 or zj = 0) are very difficult to handle. This, as a 
result, makes the MPEC disjunctive. There is no feasible point for which all inequalities are strictly satisfied. Even 
under restrictions, this makes the feasible region a union of finitely many closed sets. Second, the feasible region 
of an MPEC may not be convex. Third, the feasible region of an MPEC may not be connected. 
Any subset of these three difficulties may (and frequently) occur making the problem hard to handle and is often 
expected to show up as a severe numerical instability. To date, no algorithm has yet been proposed to guarantee 
solution of general MPECs. 
 
6. Regularization Approaches 
A direct attempt to solve the MPEC given in Eq. (4) or (5) is likely to suffer from numerical difficulties. A far 
better approach is to reformulate it as a standard NLP problem by suitably “treating” the complementarity 
constraints by some regularization technique. The idea is to solve a series of NLP subproblems such that the 
original complementarity condition is increasingly enforced, as some (positive) scalar parameter µ is increased or 
decreased. We outline three such NLP-based algorithms in the following. 
Penalization: The complementarity term is transferred to the objective function and penalized (e.g. [3,4]). In 
particular, this involves modifying the objective function by adding the term zwTµ  in MPEC (4) and 

)( TTT
nnc rπξπzw ++ &&µ  in MPEC (5). The algorithm then simply increases parameter µ at each NLP iterate, with 

the intention of driving the complementarity term to zero. 
Smoothing: The complementarity conditions are replaced by a set of smooth functions 0)( =jj z,wµψ  for all j in 

MPEC (4), and by 0)( =jj z,w &µψ , 0)( =j,cj,c ,ξπψ µ
&  and 0)( =j,nj,n r,πψ µ  for all j in MPEC (5). A common 

function µϕ  used is the Fischer-Burmeister function [11] written as  

 )(2)( 22
jjjjjj zwzwz,w +−++= µψ µ  (6) 

This function µψ  has the property that 0)( =jj z,wµψ  if and only if 0≥jw , 0≥jz  and 0=jj zw . The 
algorithm then iteratively decreases parameter µ in order to drive the complementarity term to zero (e.g. [7]). 
Relaxation: The original complementarity constraints are replaced by their relaxed version µ≤zwT  in MPEC (4) 
and by µ≤++ nnc rπξπzw TTT &&  in MPEC (5). The relaxed problem is solved for successively smaller values of µ to 
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force the complementarity term, which is nonnegative at feasible points, to approach zero (e.g. [7]). 
The success of which algorithm to use can be problem dependent, but we have found that all three regularizations 
performed robustly for our optimal design problems. The attraction of these schemes is that each subproblem is a 
standard NLP problem, for which the standard solvers, such as CONOPT [12], can be used. 
 
7. Illustrative Examples 
Two examples are provided: one concerns an optimal synthesis involving elastic softening materials (Fig. 1a) [4] 
and the other rigid perfectly plastic materials with frictional contacts (Figs. 1b-c) [3]. All examples can be solved 
efficiently by any of the three regularization techniques mentioned above. 
The first example considers the simultaneous topology and size design of a 3D cantilever beam (Fig. 2a) subjected 
to two points loads of 100α and 50α kN (α = 1), where v1 and v2 denote the corresponding displacements (m). The 
beam was translationally restrained in all directions at the four corner nodes at its supported end. The displacement 
limits imposed were −0.02 ≤ v1,v2 ≤ 0.02 m. The design adopted a ground structure (shown in Fig. 2b) consisting 
of truss members. The PWL elastic softening material properties (kN, m units with E = 28000 ×  103, 
ft = fc1 = 14 × 103, fc2 = 28 × 103, h1 = 16800 × 103, and h = h2 = − 2800 × 103) in Fig. 1a were used throughout, 
where l defines the member length. Area bounds for all members were set to 0 ≤ A ≤ ∞. 
The discrete truss model in Fig. 2b contains 99 nodes, 710 members, 285 degrees of freedom and 3550 yield 
functions. 
An optimal design with total volume V = 0.2305 m3 was successfully obtained by solving MPEC (4). The 
designed member distribution is as drawn in Fig. 2c. 
 
 
 
 
 
 
 
 
 
 
Figure 2: 3D cantilever beam (a) geometry and loads, (b) ground structure, (c) optimal designed structure (solid 

line denotes tension member and dashed line compression member) [4]. 
 
The second example is the 3D double layer roof truss (16 m × 16 m in plan size and 2.828 m in height) shown in 
Fig. 3a. The structure was restrained only at some bottom layer nodes, in the y-axis direction along its perimeter 
and in all directions at four corners. At these bottom layer nodes 2, 3, 5, 8, 9, 12, 14 and 15, unilateral (along the 
x-axis) Coulomb frictional (Fig. 1c with 30tan .=φ  and 0=ϕ ) supports were installed along the perimeter. 
The roof truss was designed for α = 20 applied at top layer nodes, namely F(x:y:z) = (16α:4α:−16α) at each node 
shown by ο in Fig. 3a, and 0.5F and 0.25F at the nodes indicated by • and ⊗, respectively. Standard CHS sections 
with a yield stress of fy = 250 × 103 kNm−

2 were adopted. All bottom layer members had the same area A1, all top 
layer members area A2, and diagonal members area A3, with all areas bounded as 820 × 10−

6 ≤ A ≤ 2710× 10−
6 m2. 

 

 
 

Figure 3: 3D double layer roof truss (a) geometry and loads and (b) collapse mechanism (ο, • and ⊗ denote applied 
forces F, 0.5F and 0.25F, respectively) [3]. 
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The discrete truss model consists of 128 members, 41 nodes and 103 degrees of freedom. 
The MPEC (5) was successfully solved to provide the optimal design in Fig. 3b, with V = 0.8899 m3, 
A1 = 2044 ×10−

6 m2, A2 = 1093 × 10−
6 m2 and A3 = 2027 × 10−

6 m2. The corresponding collapse mechanism in 
Fig. 3b involves translation at 6 contacts (namely supports 2, 3, 5, 8, 9 and 12) and no translation at 2 contacts 
(supports 14 and 15). 
 
8. Concluding Remarks 
Various state problems in engineering mechanics can be formulated as mathematical programs with 
complementarity constraints or more specifically as MCPs. The inverse or synthesis problems to such MCPs lead 
naturally to a challenging problem class known as MPECs. This short review is intended to provide an overview of 
the formulations and solution approaches to certain MPECs that arise in the context of structural optimization. The 
complementarity conditions describe naturally and elegantly elastoplasticity and contact conditions. 
While MCPs that arise in the structural mechanics context are eminently solvable since most possess key matrices 
with “nice” properties (e.g. positive definiteness), MPECs, on the other hand, are far more difficult to solve since 
they can be disjunctive, nonconvex and/or nonsmooth. Such properties are invariably associated with severe 
computational difficulties, similar to those in integer programming. 
In spite of these difficulties, we have had considerable success in solving structural optimization problems 
formulated as MPECs. The key idea is to regularize the complementarity conditions and transform the MPEC into 
a standard NLP problem, the iterative solution of which increasingly enforces complementarity. Three such 
techniques are penalization, smoothing and relaxation. All perform equally well with the structural optimization 
described. Numerous examples, two of which are provided herein, attest to their robustness and efficiency. 
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