Constitutive modelling of silicon under nano-scale deformation

Tania Vodenitcharova and Liangchi Zhang

School of Aerospace, Mechanical and Mechatronic Engineering

The University of Sydney

Current project on Silicon

Aim of project:

develop a constitutive model for phase transformation of Si

Why a new project? existing models cannot be applied

What is a constitutive model? mathematical formulation of physical behaviour of materials

What does constitutive model consist of?

- prediction of onset of plasticity- due to phase change
- developing of stress/strain relationship

Stress/strain relationship

OA- elastic, AB elastic-plastic, $\varepsilon_{ij}^{T} = \varepsilon_{ij}^{e} + \varepsilon_{ij}^{p} d\varepsilon_{ij}^{p} = d\varepsilon_{ij}^{p, deviatoric} + d\varepsilon_{ij}^{p, volumetric}$

What do we need to develop?

Incremental stress-strain relation: $\{d\sigma\} = [C(\sigma_{mn})] \{d\epsilon\}, [C]- constitutive matrix is derived$

Yield function: $F(\sigma, \varepsilon) = (\sigma^{eff})^2 + 1.5 R^2 I_1^2 / [\sigma_m - (\sigma^t + \sigma^c)/2]^2 - 1.5 R^2 = 0$ material constants: E, K; σ^t , σ^c , R for each phase F < 0 elastic, F > 0 plastic

Flow rule:

 $d\epsilon_{ij}^{p} = \lambda \partial F / \partial \sigma_{ij}$, associated normality, isotropic hardening

Hardening is prescribed by hydrostatic pressure tests

- Assumed multi-linear
- Given by hydrostatic pressure tests/ molecular dynamics simulations
- Yield surface **uniformly expands** along the semiaxes of ellipsoid

FEA Simulations

