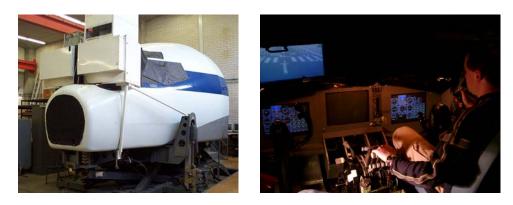
Thesis Topics for 2009

Supervised by Peter Gibbens

pwg@aeromech.usyd.edu.au


In 2009, I am offering thesis topics in the following projects;

- A: Variable Stability Flight Simulator
- B: Jabiru Flight Laboratory (JabLab)
- C: Vision Systems for Flight Guidance
- D: Predictive Control for Terminal Guidance (landing)
- E: Flight stability experiment free flying wing in wind tunnel

My approach to selection of candidates for these topics is to accept nominations for each topic, and then to choose the most suitable person for the job. Expressions of interest can be made by emailing me. Expressions from multiple students are acceptable as students working on each project will work as a team. I will arrange a meeting later in 2nd semester with all interested parties and will assign individual responsibilities.

Project Descriptions:

A: Variable Stability Flight Simulator

The Variable Stability Flight Simulator is a facility aimed at providing enhanced learning opportunities in courses and topics related to Flight Mechanics. It allows students and researchers to study the effects of variations in an aircraft's aerodynamic characteristics on flight stability, controllability and handling qualities. The simulator is set up to allow the simulation of any type of aircraft, and to allow implementation and testing of control system designs in real time. It has been equipped with the necessary avionics hardware to facilitate these activities, and the compatible software is being developed via thesis projects. Much progress has been made in recent towards these goals. Further developments are intended in 2009. Detailed goals are outlined in the table below. These involve development of individual hardware and software components of the simulation system, and modelling of a range of aircraft with interesting and varied dynamic behaviours.

More detailed information the facility and recent thesis work can be found at the project web page <u>http://www.aeromech.usyd.edu.au/vsfs/</u> and the Flight Mechanics Thesis web page <u>http://www.aeromech.usyd.edu.au/flightm/aero4950/aero4950.html</u> where resources and previous theses are available.

B: Jabiru Flight Laboratory

The Jabiru Flight Laboratory is based on the School's J400 four seat Jabiru. This has being fitted out with a glass cockpit avionics system, a suite of flight sensors and a data acquisition system to measure all flight characteristics. The complete system will provide a flight test capability that will facilitate teaching and learning in flight test techniques, as well as research into flight stability, avionics systems and flight control system development.

This project is nearing maturity. The sensor and data acquisition systems are due to be installed before the end of 2009. Subsequent work will involve calibration of sensors, data fusion and integration with research projects in visual guidance and predictive control.

More detailed information the facility and recent thesis work can (soon) be found at the project web page <u>http://www.aeromech.usyd.edu.au/JabLab</u> and the Flight Mechanics Thesis web page http://www.aeromech.usyd.edu.au/flightm/aero4950/aero4950.html where

<u>http://www.aeromech.usyd.edu.au/flightm/aero4950/aero4950.html</u> where resources and previous theses are available.

C: Vision Systems for Flight Guidance and Control

This is a new research initiative involving the use of vision systems (cameras) and image processing techniques to detect important visual features like horizons and runways characteristics in the interests providing feedback information for the control of an aircraft. Initially the concepts will be investigated by simulation via Matlab/Simulink and the VSFS. These activities will be aided in 2009 by acquisition and analysis of real flight imagery using the Jabiru Flight laboratory.

D: Predictive Control for Terminal Guidance

This project aims to develop new flight control methodologies for critical flight phases such as landing. In these flight phases the control lags associated with conventional feedback control methods become unwieldy. Predictive control methods promise to overcome these problems by taking pre-emptive action in order to bring the aircraft to an acceptable landing. This is particularly important in crosswinds and turbulence. A new method of predictive control is to be implemented and evaluated with the aid of simulation.

E: Wind Tunnel Dynamic Flight Stability Experiment

This project involves the development of wind tunnel models to demonstrate the dynamic characteristics of aircraft stability and response. The experiments demonstrate the effects of tail volume coefficient on Neutral Point and investigate static margin effects of stability. Experiments will generate virtual data for implementation as a virtual online experiment to be integrated in the AERO3560 Flight Mechanics 1 course. The web site is partially complete and development will continue in 2009. The experiments are being extended to demonstrate stability augmentation using feedback control.

Detailed duties in each of these projects are outlined in the following table

Detailed Duties

Topic	Title	Priority	Description of Duty
A1	Autopilot Control System Development	High	Aim: To complement the Mode Control Panel and Flight Management System developments with control system design and evaluation. Hardware and software development using Simulink. Development of control laws for various aircraft. Demonstration of their effects and variations. One of the goals here is to develop the software systems to a point where control designs in Assignment 4 of AERO4560 Flight Mechanics 2 can be integrated and trialled to reinforce learning. Preparation for implementation of the laboratory exercise in 2009 is involved.
			predictive control techniques to general flight control applications for various aircraft.
A2	Flight Simulator Aircraft Models	Medium	Aim: To Implement various aircraft models in the Flight Simulator. Research aerodynamic derivative characterisation for various aircraft. Implementation of database and polynomial representation of aerodynamic data. Simulation of aircraft dynamics. Some of this may involve completion of current aircraft modelling initiatives.
A3	Flight Simulation Software Systems	High	Aim: To develop plugins to control third-party software systems like X-plane or MS Flight Simulator to provide landscape imagery and instrument displays. This project furthers significant developments that have lead to the large scale integration of X-Plane graphics upgrades into the simulator. More work is required to streamline plugin operation and integration so that the simulation operation is seamless. Extension can be considered to the integration with MS Flight Simulator as this has new higher integrity graphics. Integration of other avionics software systems is also desirable. May require C/C++
A4	Variable Stability Simulation Development	High	Aim: Continue development of the Variable Stability Module and implement it in F.M teaching programme. Involves development of software interfaces, organisation of data structures and storage methods, transmission between PC's and real-time implementation in the Real-Time simulation. Development of interfaces through which the operator of the Simulator modifies flight stability, controls flight modes and options, weather conditions, instrument and system failures etc. This

A5	Flight Simulator Propulsion Models and Landing system dynamics	High	interface also will give flight path plots of the scenarios flown, and will store trajectory data for later analysis. Navigation aids and communication to simulation core. This project involves research associated with organising and assessing the effectiveness of the simulation in teaching flight stability and control. May requires C/C++ Aim: Develop generic dynamic models for four basic engine types and undercarriage dynamics. Currently only turbofan models are implemented. It is desired to generate generic models for the other three engine types and to make them selectable in the flight simulator. A good generic dynamics model of aircraft undercarriage systems is required
			to improve the landing dynamics. Implementation in Simulink in real-time.
A6	F111 Flight simulation and control (** Subject to completion in 2008)	Medium	Aim: To implement F111C flight dynamics model in the Flight Simulator. Develop database system, polynomial derivative representations and interfacing routines for Simulink. Model control systems and implement dynamics model. Develop control laws and routines, interface with MCP.
A7	** Aircraft spinning simulation	Medium	Aim: To develop a simulation of aircraft spinning for the Flight Simulator. Develop Simulink spinning model, implement databases in Simulink. Test results in simulation.
A8	** Sidestick development and integration	Medium	Aim: To develop sidesticks for alternative method of controlling the simulation. This may involve some mechanical and electronic work, including simulink software development, I/O and control.
B1	Jabiru Flight test and control lab	High	Aim: Complete the installation of flight test equipment and perform full aircraft flight test programme. Sensor and computer system design and integration. Sensor calibration. Software preparation, data acquisition, test and analysis procedures. Flight test programme, data acquisition and analysis. This involves some flight in the aircraft for flight test manoeuvre evaluation and data collection for analysis. An end goal is to develop a complete characterisation of the aircraft's dynamics for simulation if the VSFS.
B2	Jabiru Avionics System Assessment	Medium	Aim: Integrate and assessment of the EFIS/One avionics system. This will involve electronic interfacing associated with installation and integration with the Flight Test equipment (B1). The primary goals are the assessment of the operation of the system in flight, and of its use and utility in teaching future avionics course units.

С	Vision Systems	High	Aim: To develop vision processing techniques to
-	for Flight	<u> </u>	analyse flight response data from camera images.
	Guidance		This will involve acquisition of camera images of
	Guidanee		typical flight scenery like horizons and runways.
			The focus is on detecting important features in the
			scene that can be identified and tracked in order to
			determine the aircraft state for subsequent use in
			control. Initially the techniques can be developed
			and analysed using matlab. Simulation of the image
			processing, data analysis and feedback control
			integration can be simulated together with a flight
			simulation in order to evaluate closed loop
			performance. Involves implementation of
			algorithms in real-time for integration into data
			acquisition systems.
			The intention is to develop navigation filters to
			accurately track the aircraft state.
			- Tight coupling of the image processing
			algorithms with inertial data.
			- Robustification of feature detection
			algorithms
			- Extension to detection of general features
			for automated visual navigation.
D	Predictive	High	Aim: To develop predictive control strategies and
	Control for	_	to evaluate them for terminal guidance. This project
	Terminal		involves the development of algorithms to evaluate
	Guidance		a new technique for predictive control. The aim is
			to implement this technique in terminal flight
			phases in order to evaluate control performance
			improvement offered by the predictive feature. This
			can be done by comparison with conventional
			control designs via flight simulation. The study will
			evaluate control of landing approach and flare in
			calm, crosswind and turbulent conditions. A global
			aim is to integrate this approach with visual
			navigation to provide guidance indicators to the
			pilot via a flight director and to research the
			effectiveness as a flight control aid.
			- Another element will aim to develop the basic
			principles of a new predictive control technique.
			This is new research that will require a very good
			student with good mathematical skills. Very
E1	Q4-4:- Q4-1-114	Medium	challenging.
E1	Static Stability	wieutum	Aim: Wind-tunnel test to demonstrate static
	experiment and		stability of a wing and wing/tail combinations.
	Web		Complete experimental equipment set-up. Perform
	development		wind tunnel experiments and develop web page.
			Develop Labview software to acquire data and run
			flight control loops. This may require conversion to
			Visual C for an interested student with suitable
			skills.