TOPOLOGY OPTIMISATION OF REPRESENTATIVE AIRCRAFT WING GEOMETRIES WITH AN EXPERIMENTAL VALIDATION

David J. Munk¹, Gareth A. Vio¹, Jonathan E. Cooper²

¹School of Aerospace, Mechanical and Mechatronics Engineering
The University of Sydney, Sydney, NSW 2006 Australia
david.munk@sydney.edu.au
gareth.vio@sydney.edu.au

²Department of Aerospace Engineering
University of Bristol, Bristol BS8 1TH The United Kingdom
j.e.cooper@bristol.ac.uk

Keywords: Topology, optimisation, vibrations, resonance

Abstract: Increasingly aircraft are being designed to be more environmentally friendly and fuel efficient, as defined by the 2020-Vision and Flight-Path EU initiatives. This entails a reduction in aircraft weight while still maintaining all the other constraints. The conventional, semi-monocoque, aircraft design has not changed for the past 50 years. Recently, developments in aircraft design has mainly come from the use of novel materials. A technique has recently been proposed, whereby topology optimisation is used, to determine the material distribution of simple flat plate wings for improved flutter characteristics. It was found that by modifying eigenmode shapes and separating the static natural frequencies the flutter velocity of the simple models could be improved. However, topology optimisation of continuum structures for dynamic stability is, thus far, limited to relatively small design problems. Therefore, this study has two aims. Firstly, it is to extend the method to representative aircraft wing structures and secondly to verify the theoretical results by experiment.

1 INTRODUCTION

Structural topology optimisation strives to find, through material distribution, the optimum for a given objective and constraints, such as a prescribed amount of material [1]. Topology optimisation has evolved dramatically over the past two decades [2]. However, has only been recently applied to aircraft design. One such example is the design of the inboard inner and outer fixed leading edge ribs and fuselage door intercostals of the Airbus A380 aircraft [3]. This application is estimated to have saved 1000kg per A380 aircraft, resulting in reduced fuel burn. Early efforts to apply topology optimisation to aircraft design used truss topology optimisation to design the internal structure for aircraft wings [4]. More recently, the Solid Isotropic Material with Penalisation (SIMP) method has been applied to cut-out design, in pre-defined internal structures [5] and to find optimal internal wing structures, with respect to stiffness, without a predefined internal structure [6, 7]. Therefore, topology optimisation has previously been used for improving aircraft wing designs, providing alternatives to the traditional structural layout. However, the full potential of topology optimisation for aircraft design has not been realised, since the objective has primarily been limited to considering strength criteria. Thus, the dynamic criteria of a wing has only be considered as an objective for simple wing models [8, 9].
Topology optimisation with respect to eigenfrequencies of structural vibration was first considered by Diaz and Kikuchi [10]. They dealt with single frequency design of plane disks. Subsequently, several studies presented different formulations for simultaneous maximisation of several frequencies for free vibrating plate and disk structures [11–13]. These early studies noticed numerical instabilities that are present in topology optimisation for dynamic stability, such as localised spurious modes and mode switching, which often caused non-convergence of the solution. A technique to avoid these spurious modes was given by Pedersen [14], who dealt with maximum fundamental eigenfrequency design of plates. More recent studies applied a variable bound formulation [15], for the facilitation of multiple eigenfrequencies [16,17]. These studies deal with the maximisation of the separation of adjacent eigenfrequencies for single and bi-material plates. Furthermore, the maximisation of the dynamic stiffness of elastic structures subjected to time-harmonic external loading of given frequency and amplitude have been solved by topology optimisation [18–20]. Similarly, topology optimisation for minimum vibration amplitude response for a given range of excitation frequencies has been performed [21, 22]. For recent papers on minimum frequency response the reader is advised to seek out the work of Yoon [23] and Shu et al. [24].

In topology optimisation it is often found that, although an eigenfrequency is simple during the initial stages of the iterative design procedure, at a certain stage it may become multiple due to coincidence with one or more of its adjacent eigenfrequencies [25]. In order to capture this behaviour, a more general solution procedure that allows for multiplicity of the eigenfrequency must be applied. Furthermore, the appearance of artificial modes in low density regions, which occur as very localised modes in regions with relatively large mass to stiffness ratio, become significant in eigenvalue optimisation [26]. For the SIMP interpolation model this occurs as the density goes to zero. To overcome these problems, recently Munk et al. proposed a novel moving iso-surface threshold technique [27,28]. The authors showed that if the element mass-to-stiffness ratio remains finite as density is reduced then the erroneous appearance of localised modes are avoided. Moreover, by ensuring that all modes stay within a pre-defined tolerance from each other one can ensure that the eigenvalues do not become multiple during the entire optimisation.

In aircraft structures the onset of flutter, a dynamic instability characterised by a sustained growth in vibration amplitude, is normally due to the coupling of two neighbouring modes. Traditional methods to eliminate flutter in the aerospace industry usually involve adding extra mass to the leading edge of the wings; solving the problem with the expense of extra weight. If it were possible to design a wing structure that is not based on the traditional model, one might be able to decouple the critical modes for the entire flight envelope. This paper aims to extend the theoretically concepts developed in [8] to structures representative of aircraft wings and to provide an experimental validation for the theoretical results.

2 METHODOLOGY

This study uses the SIMP method for the dynamic stability of structures, through frequency and mode shape manipulation, to maximise the fundamental frequency and separation between neighbouring modes of aircraft wings. SIMP was initially introduced [29] as an easy, but artificial, way of reducing the complexity of the earlier homogenization approach [1]. Furthermore, improving its convergence to solid-void topologies. However, since then, a physical justification of SIMP has been provided [30] and it has gone on to become one of the most popular techniques for structural topology optimisation [31]. The objective is to separate neighbouring
frequencies with a constraint on the fundamental frequency and likeness of mode shapes, determined through the Model Assurance Criteria (MAC) [32]. Therefore, the optimisation problem can be defined by,

\[
\begin{align*}
\text{Maximise: } & \quad \omega_{nk} - \omega_{nl} \\
\text{Subject to: } & \quad ([K] - \omega_{n}^2[M]) \{\Phi_n\} = 0 \\
& \quad \{\Phi_n\}^T [M] \{\Phi_n\} = 1 \\
& \quad \sum_{i=0}^{i=n} x_i \leq V \\
& \quad \omega_{n1} \geq \zeta \\
& \quad MAC \leq \epsilon \\
& \quad x = [x_{\text{min}}, 1]^n
\end{align*}
\]

where \(\omega_n\) is the eigenfrequency and \(\Phi_n\) the corresponding eigenvector, here the subscript \(k\) and \(l\) specify the modes that are being separated. \([K]\) and \([M]\) are the stiffness and mass matrices, respectively. \(V\) is volume constraint, or the maximum volume of solid material allowed in the final design, \(x\) is the vector of the design variables, \(x_i\), \(x_{\text{min}}\) is the minimum value the design variable can take \((10^{-3})\) and \(n\) is the total number of elements in the model. \(\zeta\) and \(\epsilon\) are the minimum fundamental frequency, \(\omega_{n1}\), and maximum likeness of the mode shapes, respectively.

In Finite Element Analysis (FEA) the dynamic behaviour of structures is modelled by the eigenvalue problem:

\[
([K] - \omega_{n}^2[M]) \{\Phi_n\} = 0
\]

Therefore, the eigenvalue, \(\omega_n\), can be related to the eigenvector, \(\{\Phi_n\}\), through the Rayleigh quotient:

\[
\frac{\{\Phi_n\}^T [K] \{\Phi_n\}}{\{\Phi_n\}^T [M] \{\Phi_n\}}
\]

From Eq. 3, the sensitivity of the objective function (Eq. 1) can be calculated by,

\[
\frac{\partial \omega_n}{\partial x_i} = \frac{1}{2\omega_n \{\Phi_n\}^T [M] \{\Phi_n\}} \left[2 \frac{\partial \{\Phi_n\}^T}{\partial x_i} ([K] - \omega_{n}^2[M]) \{\Phi_n\} + \ldots \right. \\
\left. \{\Phi_n\}^T \left(\frac{\partial [K]}{\partial x_i} - \omega_{n}^2 \frac{\partial [M]}{\partial x_i} \right) \{\Phi_n\} \right]
\]

From Eq. 1 it is known that: \(([K] - \omega_{n}^2[M]) \{\Phi_n\} = 0 \) and \(\{\Phi_n\}^T [M] \{\Phi_n\} = 1 \). Therefore, Eq. 4 can be simplified to:

\[
\frac{\partial \omega_n}{\partial x_i} = \frac{1}{2\omega_n} \left[\{\Phi_n\}^T \left(\frac{\partial [K]}{\partial x_i} - \omega_{n}^2 \frac{\partial [M]}{\partial x_i} \right) \{\Phi_n\} \right]
\]

Using the material interpolation scheme as given in [27], the derivatives of the mass and stiffness matrices are found by,
\[
\frac{\partial |\mathbf{K}|}{\partial x_i} = \frac{1 - x_{\text{min}}^i p x_i^{p-1} |\mathbf{K}|_0}{1 - x_{\text{min}}^i} \quad (6)
\]

\[
\frac{\partial |\mathbf{M}|}{\partial x_i} = |\mathbf{M}|_0 \quad (7)
\]

Here \(|\mathbf{K}|_0\) and \(|\mathbf{M}|_0\) are the element mass and stiffness matrices for solid elements. Thus, substituting Eqs. 6 and 7 into Eq. 5 gives:

\[
\frac{\partial \omega_n}{\partial x_i} = \frac{1}{2\omega_n} \left[\{\Phi_n\}^T \left(\frac{1 - x_{\text{min}}^i p x_i^{p-1} |\mathbf{K}|_0 - \omega_n^2 |\mathbf{M}|_0 \right) \{\Phi_n\} \right] \quad (8)
\]

The sensitivity number (Eq. 8) is an indicator of the change in the eigenvalue, \(\omega_n^2\), as a result of the removal of the \(i^{th}\) element. Thus, for the separation of two frequencies, \(k\) and \(l\), the sensitivity number, \(\alpha\), can be found by,

\[
\alpha = \frac{\partial \omega_{nk}}{\partial x_i} - \frac{\partial \omega_{nl}}{\partial x_i} \quad (9)
\]

Similarly, a sensitivity number must be derived for the mode shape constraint. As already mentioned, the MAC criteria is used to find the likeness of modes, which can be found by:

\[
MAC = \frac{\left(\{\Phi_k\}^T \{\Phi_l\} \right)^2}{\left(\{\Phi_k\}^T \{\Phi_k\} \right) \left(\{\Phi_l\}^T \{\Phi_l\} \right)} \quad (10)
\]

Therefore, by differentiating Eq. 10 with respect to the design variables, \(x_i\), the sensitivity numbers can be found by,

\[
\frac{\partial MAC}{\partial x_i} = \alpha_{\text{n}} \frac{\partial |\mathbf{K}|}{\partial x_i} \{\Phi_n\} + \left[\alpha \{\Phi_n\}^T - \omega_n^2 \alpha_{\text{n}} \right] \frac{\partial |\mathbf{M}|}{\partial x_i} \{\Phi_n\} \quad (11)
\]

where the Lagrange multipliers, \(a\) and \(\alpha_{\text{n}}\) are unknown scalers given by,

\[
a = \left[\frac{\left(\{\Phi_k\}^T \{\Phi_l\} \right) \{\Phi_k\}^T - \left(\{\Phi_k\}^T \{\Phi_l\} \right)^2}{\left(\{\Phi_k\}^T \{\Phi_k\} \right) \left(\{\Phi_l\}^T \{\Phi_l\} \right)} \right] \{\Phi_l\}^T \quad (12)
\]

and

\[
\alpha_{\text{n}} = -\alpha_{\text{p}}^T |\mathbf{M}| \{\Phi_n\} \cdot \{\Phi_n\} + \alpha_{\text{p}} \quad (13)
\]
where \(\alpha_p \) is the particular solution. Therefore, using the sensitivity numbers defined in Eqs. 8, 9 and 11 the optimisation problem (Eq. 1) can be solved.

It has been shown that, for eigenfrequency objectives, numerical instabilities can arise during the optimisation procedure (Sect. 1). These numerical instabilities are magnified for non-linear complex large scale structures [2]. To alleviate this issue, Munk et al. developed a simple alternative method for topology optimisation with dynamic objectives [33]. They noticed that nominal stress contours could be derived by applying the vibration mode shapes as displacement fields, defined as the dynamic von Mises stress. They showed that the dynamic von Mises stress and frequency sensitivity numbers (Eq. 9) are equivalent for element removal and addition. Therefore, the sensitivity of the objective function (Eq. 1) can be calculated by,

\[
\sigma_{\text{vm},d}^2 = \{\Phi_n\}^T [B]^T [Z] [B] \{\Phi_n\}
\]

(14)

where \([Z] = [D]^T [T] [D]\), \([D]\) and \([B]\) denote the elastic and strain matrices, respectively and \([T]\) is the coefficient matrix defined by,

\[
[T] = \begin{bmatrix}
1 & -0.5 & 0 \\
-0.5 & 1 & 0 \\
0 & 0 & 3
\end{bmatrix}
\]

(15)

Thus, to avoid numerical instabilities, for the representative aircraft wing geometries Eq. 14 is used as the sensitivity function.

3 RESULTS AND DISCUSSION

In this section the results from this study are presented and discussed. First, the simplified plate wing models will be optimised, solving Eq. 1 with and without a constraint on the fundamental frequency. This is followed by an experimental analysis on the optimised wing geometries determining their dynamic characteristics. Finally, the method is applied to a representative wing model, the NASA Common Research Model (CRM), verifying that the method can be extended to large scale design problems.

3.1 Simplified plate wing

A simplified, rectangular, aircraft wing is optimised for maximum frequency separation to improve its dynamic characteristics. The wing model (Fig. 1) has an aspect ratio of 3 with a chord of 20cm and a span of 60cm and is discretised by \(40 \times 120\) four node plate elements. The wing has a uniform thickness of 1mm and is made from aluminium, having a Young’s modulus of \(E = 70\) GPa, Poisson’s ratio of \(\nu = 0.3\) and a density of \(\rho = 2700\) kg/m\(^3\). The boundary conditions of the wing are a locked root chord, creating a cantilever model. The initial model for the simplified plate wing is illustrated in Fig. 1.

First the dynamic characteristics of the simplified flat plate wing are determined by running a flutter analysis. From this the flutter speed of the initial wing can be determined, and also the speed at which the wing begins to experience a reduction in damping, and hence, the speed at which the wing will have a reduction in stiffness and begin to oscillate under the dynamic loads.
The corresponding frequency-damping plot for the initial plate wing model (Fig. 1) is shown in Fig. 2.

Figure 2: Frequency-damping plot for initial simplified plate wing model.

The first four natural frequencies are plotted, however the first ten were calculated to ensure that the higher energy frequencies are not influential to the dynamic stability of the wing (Fig. 2). As is seen by Fig. 2, at the low speed range, \(v = [0, 40] \text{ms}^{-1} \), the first and third natural frequencies undergo significant change, with the third immediately dropping below the second once velocity is applied to the wing. The first natural frequency rapidly drops once a velocity of \(v = 20 \text{ms}^{-1} \) is reached. For this speed range (Fig. 2), there are two instability modes. The first, is due to the third mode, resulting in a flutter instability at approximately \(v = 18 \text{ms}^{-1} \). This is seen by the damping ratio of the third mode going from negative to positive damping (Fig. 2). The second, is due to the first mode, resulting in a divergence instability at approximately \(v = 23 \text{ms}^{-1} \). This is seen by the first mode frequency rapidly declining to zero and the damping ratio converging to zero (Fig. 2). Thus, the model has no stiffness and, as a result, diverges.

The static natural frequencies for the initial model (Fig. 1) can be seen in Fig. 2 by looking at the frequency plot for a velocity of \(v = 0 \text{ms}^{-1} \). Two main points are observed. First, the second and third natural frequencies are very close, having a natural frequency of \(\omega_{n2} = 14.3822 \text{Hz} \) and \(\omega_{n3} = 14.5501 \text{Hz} \), respectively. Second, the fundamental frequency is comparatively low, having a natural frequency of \(\omega_{n1} = 2.3289 \text{Hz} \). Therefore, the close proximity of the third and second frequencies suggest an instability in one of these modes and the low magnitude of the fundamental frequency promotes divergence. Since, the first instability of the wing is flutter of the third mode (Fig. 2) the separation of the frequencies is more critical to its dynamic stability.
The simplified plate wing is now optimised with the objective of maximum separation between the first ten frequencies (Eq. 1). For this first analysis, the constraint on the fundamental frequency is set to $\zeta = 0\text{Hz}$, i.e. it is not constrained to give the optimiser complete freedom. Furthermore, to ensure the aspect ratio of the wing is not changed by the optimiser a geometrical constraint is added, defining the border of the plate as non-designable solid material. This technique was also employed in [27]. The wing is optimised for a final volume of 85% of the initial model (Fig. 1), thus reducing the initial mass by 15%. The optimised geometry is given in Fig. 3.

![Figure 3: Final design for initial simplified plate wing model without fundamental frequency constraint.](image)

The optimiser has removed material from three zones of the wing (Fig. 3). The largest zone is near the tip of the wing, i.e. the furthest point from the locked boundary condition. This results in a reduction in the second natural frequency, which corresponds to the second bending mode of the wing. Since the wing is still symmetric about the vertical axis, the third mode, which corresponds to the first twisting mode, is practically unchanged. Thus, the optimiser has increased the gap between neighbouring modes by reducing the second and keeping the third constant so that it does not approach the fourth mode. Material is also removed near the root of the wing, where the locked boundary condition is enforced (Fig. 3). This will decrease the first mode, which corresponds to the first bending mode, such that the second mode does not approach the first, avoiding a first and second mode coupling. Therefore, the final design has a minimum frequency separation of $\Delta \omega_n = 8.3626\text{Hz}$. However, the fundamental frequency has been reduced by 42% to 1.3567Hz. Therefore, it is expected that the final wing design will be more susceptible to divergence than the initial wing design.

Next, to avoid increasing the wings susceptibility to divergence, a frequency constraint is applied to the optimisation by setting $\zeta = \omega_{1_{0}}$. Where $\omega_{1_{0}}$ is the fundamental frequency of the initial wing design, i.e. 2.3289Hz. Again the wing is optimised for a final volume of 85% of the initial model (Fig. 1). The optimised geometry is given in Fig. 4.

![Figure 4: Final design for initial simplified plate wing model with a fundamental frequency constraint.](image)

In this case, the optimiser has considerably reduced the amount of material that is removed from near the locked boundary condition. This is to keep the fundamental frequency above the constraint. Furthermore, less material from near the tip has been removed to keep the second fundamental frequency from being decreased down to near the fundamental frequency.
Again the wing is symmetric about the vertical axis, hence the frequency of the third mode is almost unchanged. Therefore, the final design has a minimum frequency separation of $\Delta \omega_n = 7.413\text{Hz}$. Thus, the minimum frequency separation has been reduced compared to the previous optimisation problem, however is still considerably higher than for the initial design ($\Delta \omega_n = 0.1679\text{Hz}$). Furthermore, the fundamental frequency has been slightly increased compared to the initial design, from 2.3289Hz to 2.3424Hz. Therefore, this design should not be more susceptible to divergence.

The ability of topology optimisation to design the natural frequencies of simple plate wings has been demonstrated here. The optimiser is able to increase the frequency separation further when there are less physical constraints applied to the problem. However, without the physical constraints the fundamental frequency is significantly reduced, resulting in the promotion of other adverse phenomena, such as stiffness reduction and earlier divergence. The theoretical results from this section will be confirmed experimentally in Sect. 3.2.

3.2 Experiment analysis

3.3 Representative wing model

The NASA CRM wing model is optimised for frequency separation to improve its dynamic characteristics. The wing model (Fig. 5) is a full-scale cantilevered wing. The CRM is representative of a modern single-aisle transport aircraft configuration, which was created for collaborative research within the aerodynamics community. It has a wingspan of 58.77m, with an aspect ratio of 9, a taper ratio of 0.275, a leading edge sweep angle of 35° and a break along the trailing edge at 37% of the semi-span. The CRM is discretised by $14 \times 126 \times 3$ eight node solid elements. The CRM is manufactured from aluminium, having a Young’s modulus of $E = 70\text{GPa}$, Poisson’s ratio of $\nu = 0.3$ and a density of $\rho = 2700\text{kg/m}^3$. The boundary conditions of the wing are a locked along the entire root chord, to model the cantilever. The initial model for the CRM wing is illustrated in Fig. 5.

![Figure 5: Initial NASA CRM wing model.](image)

A real eigenvalue analysis is performed on the initial CRM wing model to determine its natural frequencies. It is found that the wing model has an initial fundamental frequency of $\omega_{1i} = 0.56918\text{Hz}$ and an initial minimum frequency separation, for the first ten modes, of $\Delta \omega_n = 0.7755\text{Hz}$. Similarly to the simplified plate wing separation, the neighbouring models that have the least separation are the third and second modes. For this analysis, the optimisation problem with a frequency constraint, again defined by $\zeta = \omega_{10}$, is solved. Where ω_{10} is the fundamental frequency of the initial CRM wing design. i.e. 0.56918Hz. The CRM wing is optimised for a final volume of 50% of the initial model (Fig. 5). The optimised internal structure is given in Fig. 6.

For this analysis the volume constraint is quite low, i.e. the optimiser removes 50% of the initial wing structure. This has resulted in the removal of all the internal structure from the tip section.
of the wing. This is similar to what was seen in the simple plate wing analysis (Sect. 3.1) and is done to keep the fundamental frequency above the constraint. Furthermore, material has been removed just before the break along the trailing edge. Unlike the simple plate models, in this case the final internal structure is not symmetric about the vertical axis. Therefore, the third mode, which is again the first twisting mode, is increased. However, the initial structure is not symmetric about the vertical axis, unlike the simplified plate wing model, and hence might be why symmetry of the final structure is not observed. The final design has a minimum frequency separation of $\Delta \omega_n = 3.1503\text{Hz}$, which is a considerable increase from the initial design of 0.7755Hz. Furthermore, the final fundamental frequency has been increased from 0.56918Hz to 1.3574Hz. However, there are some further points to consider. Namely, no stress or buckling constraints have been implemented, and therefore, the wing is not designed with any strength objectives considered. This is obvious by the large skin panels that have been left without any internal structure. This would definitely result in panel buckling and excess stresses once the aerodynamic load is applied. Therefore, to obtain more realistic internal structure designs these considerations must also be treated by the optimiser.

The ability of topology optimisation to design the natural frequencies of a representative wing model has been demonstrated here. The optimiser is able to increase the frequency separation, whilst also satisfying the physical constraint on the fundamental frequency. Furthermore, no numerical instabilities are present, showing that such methods can be used on large scale problems.

4 CONCLUSION

This work presents a topology optimisation methodology, based on the SIMP method, for the design of the natural frequencies and mode shapes of structures. The method uses the recent dynamic von Mises stress criterion to extend the analysis to representative wing structures. Comparison of the simplified plate model design to low speed wind tunnel experiments show that a constraint on the fundamental frequency is necessary to ensure divergence does not occur, before the flutter instability. Furthermore, it was shown that the flutter speed could be increased despite the mass being reduced by 15%. This work adds to the current literature on topology optimisation applications to aircraft design and to dynamic objectives in topology optimisation. Finally, it is noted that the current study is solely concerned with dynamic objectives. Especially for the CRM wing model, this results in buckling and stress criteria being exceeded. Therefore, future work is to consider strength objectives along side the dynamic to achieve realisable designs.
5 REFERENCES

COPYRIGHT STATEMENT

The authors confirm that they, and/or their company or organization, hold copyright on all of the original material included in this paper. The authors also confirm that they have obtained permission, from the copyright holder of any third party material included in this paper, to publish it as part of their paper. The authors confirm that they give permission, or have obtained permission from the copyright holder of this paper, for the publication and distribution of this paper as part of the IFASD-2017 proceedings or as individual off-prints from the proceedings.