Forces and Moments: Part 2

Calculating the moment using rectangular components:

The moment of a force F about the axis passing through point O and perpendicular to the plane containing O and F can be expressed using the cross product:
$\boldsymbol{M}_{o}=\boldsymbol{r} x \boldsymbol{F}$
The magnitude of the moment is the area shown below:

$M_{o}=|r x F|=r F \sin \theta$
$\boldsymbol{r}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$
$\boldsymbol{F}=F_{x} \boldsymbol{i}+F_{y} \boldsymbol{j}+F_{z} \boldsymbol{k}$

$$
\underline{\mathbf{M}}_{O}=\underline{\mathbf{r}} \times \underline{\mathbf{F}}=\left|\begin{array}{ccc}
\underline{\mathbf{i}} & \underline{\mathbf{j}} & \underline{\mathbf{k}} \\
x & \bar{y} & z \\
F_{x} & F_{y} & F_{z}
\end{array}\right|=\left(y F_{z}-z F_{y}\right) \underline{\mathbf{i}}-\left(x F_{z}-z F_{x}\right) \underline{\mathbf{j}}+\left(x F_{y}-y F_{x}\right) \underline{\mathbf{k}}
$$

Resultant moment: $\underline{\mathbf{M}}_{r}$

$$
\underline{\mathbf{M}}_{R_{0}}=\underline{\mathbf{r}}_{1} \times \underline{\mathbf{F}}_{1}+\ldots+\underline{\mathbf{r}}_{n} \times \underline{\mathbf{F}}_{n}=\sum \underline{\mathbf{r}} \times \underline{\mathbf{F}}
$$

