Forces and Moments: Part 3

Moment about an axis:

Sometimes the moment about a point is known and you are supposed to calculate its component about an axis. To find the moment, consider the dot product of M_0 and unit vector along axis a:

$$M_a = \underline{\mathbf{M}}_O \circ \underline{\mathbf{u}} = (\underline{\mathbf{r}} \times \underline{\mathbf{F}}) \circ \underline{\mathbf{u}}$$

O: any point on *a-a*

You can also find the tangent force F_{θ} and then $r \ge F_{\theta}$ is the moment about *aa*:

 $M_a = rF_g$

Let us consider the following example:

Force F causes a moment M_O about point O. What is the component of M_O along axis oy (M_y) ?

Solution:

There are 2 methods to find M_y

- 1. Scalar Analysis
- 2. Vector Analysis

(1) Scalar Analysis (first way):

 $M_0=(20)(0.5)=10$ N.m

 M_O tends to turn the pipe around axis ob. The component of M_O along the y-axis, M_y , tends to unscrew the pipe from the flange at O. Thus it is important to know its value.

 $M_y = (3/5)(10) = 6$ N.m

Scalar Analysis (second way):

To find M_y directly (not form M_0) it is necessary to determine the moment-arm, knowing that the distance from F to the y-axis is 0.3m: $M_y = (20)(0.3) = 6 \text{ N.m}$

In general, If the line of action of a force F is perpendicular to any specific axis aa thus: $M_a = F \cdot d_a$

(2) Vector Analysis:

First, use the cross product formula to calculate the moment about O: $\mathbf{M}_{O} = \mathbf{r}_{A} \times \mathbf{F}$ $\mathbf{M}_{O} = (0.3\mathbf{i} + 0.4\mathbf{j}) \times (-20\mathbf{k})$ $\mathbf{M}_{O} = \{-8\mathbf{i} + 6\mathbf{j}\} \text{ N.m}$

Then use the dot product of M_O and the unit vector along y-axis to get M_y:

$$\begin{split} \mathbf{M}_{y} &= \mathbf{M}_{O} \cdot \mathbf{u}_{a} \\ \mathbf{M}_{y} &= (-8\mathbf{i} + 6\mathbf{j}). \ (\mathbf{j}) \\ \mathbf{M}_{y} &= 6 \text{ N.m} \end{split}$$