Forces and Moments: Part 7

Reduction to a wrench:

In the general case, the resultant moment $\left(\mathrm{M}_{\mathrm{Ro}}\right)$ is perpendicular to F_{R}.
Now consider the case where F_{R} acts at an angle θ to $M_{R o}$ (Fig. a). Resolve $M_{R o}$ into two components (Fig. a):
$\mathrm{M}_{\|} \| \mathrm{F}_{\mathrm{R}}$ and $\mathrm{M}_{\perp} \perp_{\mathrm{F}_{\mathrm{R}}}$,
Eliminate $\mathrm{M} \perp$ by moving F_{R} by distance $\mathrm{d}=\mathrm{M} \perp / \mathrm{F}_{\mathrm{R}}$ from point O to point P . Now we are left with F_{R} at P and $M_{\|}$at O (Fig. b). Since $M_{\|}$is a free vector which can be moved to P (Fig. c) This combination of a collinear force and a couple moment is called a wrench or screw.

The axis of the wrench has the same line of action as the force. The wrench tends to cause both translation along and rotation about this axis.

(a)

(b)

(c)

