Forces and Moments: Part 7

Reduction to a wrench:

In the general case, the resultant moment (M_{Ro}) is perpendicular to F_R .

Now consider the case where F_R acts at an angle θ to M_{Ro} (Fig. a). Resolve M_{Ro} into two components (Fig. a):

 $M_{\parallel} \parallel F_R$ and $M_{\perp} \perp F_R$,

Eliminate M_{\perp} by moving F_R by distance $d = M_{\perp}/F_R$ from point O to point P. Now we are left with F_R at P and M_{\parallel} at O (Fig. b). Since M_{\parallel} is a free vector which can be moved to P (Fig. c) This combination of a collinear force and a couple moment is called a wrench or screw.

The axis of the wrench has the same line of action as the force. The wrench tends to cause both translation along and rotation about this axis.

