Friction- Part 4:

Belts:

Consider a flat belt passing over a fixed cylindrical drum. We propose to determine the relation existing between the values T_{1} and T_{2} of the tension in the two parts of the belt when the belt is just about to slide toward the right.

Let us detach from the belt a small element PP ' subtending an angle $\Delta \theta$. We draw the FBD of the element of the belt:
$\mathrm{T}=$ the tension at P
$\mathrm{T}+\Delta \mathrm{T}=$ the tension at P^{\prime}
$\Delta \mathrm{N}=$ Normal reaction
$\Delta \mathrm{F}=$ friction force (opposite to the direction of motion)
The motion is assumed to be impending: $\Delta \mathrm{F}=\mu_{\mathrm{s}} \Delta \mathrm{N}$

Equations of equilibrium:
$\sum F_{x}=0:$
$(T+\Delta T) \cos \frac{\Delta \theta}{2}-T \cos \frac{\Delta \theta}{2}-\mu_{s} \Delta N=0$
$\sum F_{y}=0$:
$\Delta N-(T+\Delta T) \sin \frac{\Delta \theta}{2}-T \sin \frac{\Delta \theta}{2}=0$

Omitting $\Delta \mathrm{N}$:
$\frac{\Delta T}{\Delta \theta} \cos \frac{\Delta \theta}{2}-\mu_{s}\left(T+\frac{\Delta T}{2}\right) \frac{\sin (\Delta \theta / 2)}{\Delta \theta / 2}=0$
When $\Delta \theta$ approaches zero, cosine approaches $1, \Delta \mathrm{~T}$ approaches 0 and $\frac{\sin (\Delta \theta / 2)}{\Delta \theta / 2}$ also gets 1 .
Also for small $\Delta \theta, \frac{d T}{d \theta}=\frac{\Delta T}{\Delta \theta}$. Therefore:
$\frac{d T}{d \theta}=\mu_{s} T \quad$ or $\quad \frac{d T}{T}=\mu_{s} d \theta$
$\int_{T_{1}}^{T_{2}} \frac{d T}{T}=\int_{0}^{\beta} \mu_{s} d \theta$
$\ln \frac{T_{2}}{T_{1}}=\mu_{s} \beta$
So:
$\frac{T_{2}}{T_{1}}=e^{\mu_{s} \beta}$

