## MASS MOMENT OF INERTIA

## Problem 3:



Calculate the mass moment of inertia of the parabolic rod about the $y$-axis. Assume the rod is made of a uniform material and has a mass of $m$.

## Solution:

The mass moment of inertia about the $y$-axis is given by

$$
I_{y y}=\int_{\mathrm{B}} r^{2} d m=\int_{l} r^{2} \rho d l
$$

The length of the bar can be calculated from

$$
l=\int_{l} d l
$$



The element of arc length in a rectangular coordinate system can be written as

$$
d l=\sqrt{d x^{2}+d y^{2}}=\left[\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}\right] d x=\left[\sqrt{\left(\frac{d x}{d y}\right)^{2}+1}\right] d y
$$

The equation for the parabola is

$$
y=k x^{2}
$$

Substitution of the point $(a, h)$ into this equation givens the equation of the bar as

$$
y=\frac{h}{a^{2}} x^{2}
$$

The length of the bar can, therefore, be calculated as

$$
\begin{aligned}
l & =\int_{l} d l=\int_{x=0}^{x=a} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\int_{x=0}^{x=a} \sqrt{1+\left(\frac{2 h}{a^{2}} x\right)^{2}} d x
\end{aligned}
$$

The distance from the $y$-axis is $x$. Therefore, $r=x$. The mass moment of inertia about the $y$-axis can be written as

$$
\begin{aligned}
I_{z z} & =\int_{l} r^{2} \rho d l=\int_{l} x^{2} \rho d l \\
& =\rho \int_{x=0}^{x=a} x^{2} \sqrt{1+\left(\frac{2 h}{a^{2}} x\right)^{2}} d x
\end{aligned}
$$

For a uniform bar the density can be calculated using the total mass and total length of the bar so that

$$
\rho=\frac{m}{l}
$$

