Problem 1:
The mass of 700 kg is suspended from a trolley which moves along the crane rail from $\mathrm{d}=1.7 \mathrm{~m}$ to $\mathrm{d}=3.5$ m . Determine the force along the pin-connected knee strut BC and the magnitude of force at pin A as a function of position d.

Solution:
The free body diagrams for the rain and the 2-force member are shown below:
Equations of Equilibrium :
$\left(+\sum M_{A}=0\right.$
$F_{B C}\left(\frac{4}{5}\right)(1.5)-6867(d)=0$
$\Rightarrow F_{B C}=5722.5 d$
$\xrightarrow{+} \sum F_{x}=0$

$-A_{x}+(5722.5 d)\left(\frac{3}{5}\right)=0$
$\Rightarrow A_{x}=3433.5 d$
$F_{B C}=5722.5 d$
$A_{x}=3433.5 d$
$+\uparrow \sum F_{y}=0$
$-A_{y}+(5722.5 d)\left(\frac{4}{5}\right)-6867=0$
$\Rightarrow A_{y}=4578 d-6867$
$\Rightarrow F_{A}=\sqrt{(3433.5 d)^{2}+(4578 d-6867)^{2}}$

