Problem 1:
Determine the support reactions in the joints of the following truss.

Solution: We start with FBD and calculate the support reactions at A and C:

$\mathrm{F}_{\mathrm{x}}=0$	$\sum \mathrm{M}_{\mathrm{A}}=0$
$-\mathrm{A}_{\mathrm{x}}+3 \mathrm{kN}=0$	$\mathrm{C}_{\mathrm{y}}(4)-3 \mathrm{kN}(2)=0$
$\mathrm{~A}_{\mathrm{x}}=3 \mathrm{kN}$	$\mathrm{C}_{\mathrm{y}}=1.5 \mathrm{kN}$
	$\sum \mathrm{F}_{\mathrm{y}}=0$
	$\mathrm{C}_{\mathrm{y}}-\mathrm{Ay}=0$
	$\mathrm{~A}_{\mathrm{y}}=1.5 \mathrm{kN}$

Problem 2:

Determine the support reactions in the joints of the following truss.

Solution:
We start with FBD and calculate the support reactions at A and C :
$\sum \mathrm{F}_{\mathrm{x}}=0$
$600-C_{x}=0$
$\mathrm{C}_{\mathrm{x}}=600 \mathrm{~N}$
$\sum \mathrm{M}_{\mathrm{C}}=0(+\mathrm{ccw})$
$-\mathrm{A}_{\mathrm{y}}(6)+400(3)+600(4)=0$
$\mathrm{A}_{\mathrm{y}}=600 \mathrm{~N}$
$\sum \mathrm{F}_{\mathrm{y}}=0$

$\mathrm{A}_{\mathrm{y}}-400-\mathrm{C}_{\mathrm{y}}=0$
$\mathrm{C}_{\mathrm{y}}=200 \mathrm{~N}$

