Simultaneous Optimization of Initial Blank Shape and Blank Holder Force Trajectory for Square Cup Deep Drawing Using Sequential Approximate Optimization

Satoshi Kitayama¹, Marina Saikyo², Kiichiro Kawamoto³, Ken Yamamichi⁴

- ¹ Kanazawa University, Kanazawa, Japan, kitayama-s@se.kanazawa-u.ac.jp;
 ² Graduate School of Natural Science & Technology, Kanazawa University, Kanazawa, Japan, saikyo@stu.kanazawa-u.ac.jp;
 - ³ Komatsu Industry Corp., Komatsu, Japan, kiichirou_kawamoto@komatsu.co.jp;

 ⁴ Komatsu Industry Corp., Komatsu, Japan, ken_yamamichi@komatsu.co.jp;

Abstract

Optimal blank shape minimizing earing in deep drawing has a direct influence on material saving as well as product quality. This paper proposes a method for determining the optimal blank shape design in square cup deep drawing using sequential approximate optimization (SAO) with a radial basis function (RBF) network. The earing is minimized under tearing and wrinkling constraints with a variable blank holder force (VBHF), which varies through the punch stroke. Through numerical and experimental results, the validity of the proposed approach is examined.

Keywords: deep drawing blank shape design; variable blank holder force; sequential approximate optimization.