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1. Abstract
This study investigates the robust topology optimization of the thin plate under concentrated load with uncertain
load point. Several researches investigated the effect of uncertain load direction, load magnitude or load distri-
bution on the topology optimization. However, the robust topology optimization considering uncertainty of the
load point has not been studied yet. In this study, the load point uncertainty is modelled through the convex hull
model. The nominal concentrated load in out-of-plane direction is applied at the center of the plate modeled based
on Reissner-Mindlin plate theory. The load point uncertainty is limited in a circle centered at the nominal load
point. The worst load condition is defined as the applied load at the worst point in the convex hull that gives the
worst value of the mean compliance. The worst point is easily obtained from the convex hull approach. Then, the
robust objective function is formulated as a weighted sum of the mean compliance obtained from the mean load
condition and the worst compliance obtained from the worst load condition. This robust topology optimization
is constructed using the level set-based topology optimization method. Through numerical examples, the robust
optimum configuration is compared with the deterministic optimum configuration. Then, validity of the proposed
robust design method is discussed.
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3. Introduction
Recently, the robust optimum design is widely applied to the field of engineering design problems that consider
uncertainties of design parameters such as material constants and applied load conditions [1, 2]. Integrating the
topology optimization and the robust design is generally called the robust topology optimum design. Several
studies have been conducted on the robust topology optimization. Takezawaet al. [3] introduced the worst
load condition of the applied load direction or the load distribution in the topology optimization. Chenet al. [4]
applied the random field process to evaluate the space-varied random parameters. We proposed the robust topology
optimization method [5] that integrates the level set-based topology optimization [6] and the sensitivity based
robust optimization method [7]. Then, we applied the stationary stochastic process to model spatially-variable
uncertain parameters for the robust topology optimization [8]. On the research, uncertain design parameters such
as Young’s modulus and distributed load with spatial distribution are modeled by using the stationary stochastic
process with a reduced set of random variables.
This study considers the robust topology optimization for the thin plate structure. On the authors’ previous study
[9], deterministic level set-based topology optimization method for the thin-plate structure was proposed, where
the bending plate is modeled based on Reissner-Mindlin theory, This study extends it to the robust topology opti-
mization in consideration of the applied load point uncertainty. Under actual situation, the applied load point may
be varied. Therefore, the variation of the applied load point is modeled by using the convex hull modeling [10].
The convex hull is applied to obtain the worst case of uncertain parameters. By approximating the uncertainty
parameter range in the convex hull, the worst case is easily obtained. Then, the objective function is formulated as
a weighted sum of the mean compliance by the mean applied load and the worst compliance that is given by the
worst load condition. Through numerical example, the validity of the robust topology design is discussed.

4. Topology Optimization
4.1 Level Set-Based Topology Optimization
This study uses the level set-based topology optimization method [6]. The method can create holes in the solid
domain during optimization by introducing energy term derived from the phase field theory. Additionally, the
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method allows qualitative control of the geometry complexity of optimal configurations.
The level set functionφ(x) is introduced to represent a clear shape boundary∂Ω between the material domain
Ω and the void domainD\Ω asφ(x) = 0 wherex indicates an arbitrary position inD. The level set function is
defined to take a positive value in the material domain and negative in the void domain as follows:

0< φ(x)≤ 1 ∀x ∈ Ω\∂Ω
φ(x) = 0 ∀x ∈ ∂Ω
−1≤ φ(x)< 0 ∀x ∈ D\Ω

(1)

The limit state function is bounded in[−1,1] for introducing a fictitious interface energy based on the concepts of
phase field method to the objective functional.
The design optimization is formulated as following equation that contains an objective functionalF(Ω(φ)).

inf
φ

F(Ω(φ)) =
∫

Ω
f (x)dΩ (2)

where f (x) is the integrand function.
Since the above formulation allows to have discontinuous at every point, the regularization term is introduced
based on the concept of phase field method [6].

inf
φ

FR(Ω(φ)) =
∫

Ω
f (x) dΩ+

∫
D

1
2

τ|∇φ |2dΩ (3)

subject to G(Ω) =
∫

Ω
dΩ−Vmax≤ 0 (4)

whereFR is a regularized objective functional,τ is a regularization parameter that represents the ratio of the
fictitious interface energy, andG(Ω) indicates the volume constraint with the upper limitVmax.
Using Eq (3) and (4), Lagrangian̄FR is define as below:

F̄R(Ω(φ),φ) =
∫

Ω
f (x)dΩ+λG(Ω(φ))+

∫
D

1
2

τ |∇φ |2dΩ (5)

The KKT conditions of the above optimization problem are derived as follows:

F̄ ′
R = 0, λG= 0, λ ≥ 0, G≤ 0 (6)

whereF̄R andλ indicate the Lagrangian and the Lagrange multiplier, respectively.

4.2 Updating the Level Set Function
Level set function that satisfies the KKT conditions in Eq. (6) is candidate solutions of the optimization problem.
Introducing a fictitious timet, and assuming that the variation of the level set function with respect to the timet is
proportional to the gradient of Lagrangian, as follows:

∂φ
∂ t

=−K(φ)F̄ ′
R (7)

whereK(φ)> 0 is the positive proportionality coefficient.
Substitute Eq. (5) into Eq. (7) and applying Dirichlet boundary condition to the body domain boundary∂DN and
Neumann boundary condition to the other boundary, the following time evolution equation is obtained:

∂φ
∂ t

=−K(φ)
(
F̄ ′− τ∇2φ

)
(8)

∂φ
∂n

= 0 on ∂D\∂DN

φ = 1 on ∂DN

whereH(φ) is Heaviside function. Note that Eq. (8) is a reaction-diffusion equation, and the smoothness of the
level set function is ensured. Further details are provided in [6].

5. Robust Topology Optimization
Robust optimum design considers the effect of uncertainty of design variables and parameters on the objective
function and constraints. As shown in Fig. 1, the robust optimum design has smaller deterioration of the perfor-
mance under variation of design parameters than that of the deterministic optimum design wherez0 and∆zdenote
nominal value and variation of design parameter, respectively.
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Figure 1: Concept of robust optimization
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Figure 3: Reissner-Mindlin assumption

5.1 Design Problem of Thin Plate Structure
This study considers the variation of the load point of the applied concentrated load. As shown in Fig. 2, the
square plate with fixed four vertices with applied the concentrated out-of-plane load is considered. The load point
is modeled as uncertain parameter, where the nominal point is set at the center and the variation range is limited
inside of the circle.
The conventional topology design problem is to minimize the mean compliance. That is, by using the strain energy
a(u,v) and the mean compliancel(u), the objective functional is defined as follows:

inf
Ω

: F(Ω) = l(u) (9)

subject to :a(u,v) = l(v) for ∀v, u ∈U (10)

wherea(u,v) andl(v) are defined as follows:

a(u,v) =
∫

Ω
ε(u) : E : ε(v)dΩ (11)

l(v) =
∫

Γt

t ·vdΓ (12)

whereε is the linearized strain tensor,E is the elasticity tensor and theU is defined as follows:

U =
{
v = viei : vi ∈ H1 (D)

}
with v = 0 in Γu (13)

Based on Reissner-Mindlin theory, the strain energy for the thin plate structure is described as follows:

1
2

a(u,u) =
1
2

∫∫ {
Mx

∂βx

∂x
+My

∂βy

∂y
+Mxy

(
∂βy

∂x
+

∂βx

∂y

)
+Qx

(
∂w
∂x

+βx

)
+Qy

(
∂w
∂y

+βy

)}
dxdy (14)

whereMx,My,Mxy are the bending and the torsional moments,Qx andQy are the shear force,βx andβy are the
rotational angle, andh is the plate thickness as shown in Fig. 3.
The worst load case is defined as the load case that gives the worst value of the mean compliance in the given
convex hull. In this study, the worst case is found to lie on the boundary on the convex hull by preliminary
analysis. Therefore, the convex hull model is adopted. The worst case is easily obtained as solving the sub-
optimization problem in each iteration of the topology optimization loop.
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Figure 4: Flowchart of robust topology optimization
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load point
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Figure 6: Plate model for robustness evaluation

5.2 Robust Topology Optimization
The objective of the robust topology optimization is defined as a weighted sum of the mean and the worst compli-
ance as follows:

frobust(x) = (1−α)anom(u,u)+αaworst(u,u) (15)

whereanom(u,u)/2 is the strain energy density under the deterministic nominal load, andaworst(u,u)/2 is the
strain energy density under the worst load in the convex hull, and0< α < 1 is a positive weighting coefficient.
The computational flow of the proposed robust topology optimization method is shown in Fig. 4. Starting the
initialization of the level set function, the equilibrium equation of the nominal load is solved using FEM to evaluate
the mean compliance. Then, the worst load condition is searched in the convex hull and the robust objective
function is evaluated. After the convergence cheek, the level set function is updated. Then, the volume is modified
to fit the upper limit by the enclosure and bisection method [8]. The equilibrium equation is solved for the updated
geometry and the process is repeated until convergence.

6. Numerical Examples
As a simple numerical example, the square plate with 2.0m on a side and 0.01m in thickness with the fixed four
vertices as shown in Fig. 5 is considered as a fixed design domainD. Young’s modulus and Poisson’s ratio are
set as210GPa, and0.33, respectively. The fixed design domainD is discretized to21850elements for evaluating
the mean and the worst compliance. For the topology optimization, the regularization parameterτ and the volume
constraint are set as5.0×10−5 and50%, respectively.
The concentrated out-of-plane load of 1000N is applied at the center of the plate as a nominal load point. As a
random parameter, the load point is assumed to be varied in the circle centered at the nominal load point. The
convex hull is set as the quarter sector shown in Fig. 5, because of considering the symmetry condition,
It is expected that the unsymmetric load condition for the worst case will yield the unsymmetric optimum config-
uration. However, since the uncertain point will be lie on the other sectors, the unsymmetric configuration is not
suitable as the robust optimum configuration. Therefore, the other three symmetric points to the worst load point
are also considered as the worst load points. For evaluating the worst complianceaworst in Eq. (15), the plate model
is arranged to apply the four concentrated loads of four divided magnitude of 250N at the worst points as shown in
Fig. 6.

4



Figure 7: Deterministic optimum configuration Figure 8: Robust optimum configuration(α = 0.70)

Table 1: Mean compliance under deterministic load

Configuration Load point[m] Mean Compliance[J/m3]

Deterministic (0.0, 0.0) 7.606×104

Robust(α = 0.30) (0.0, 0.0) 7.572×104

Robust(α = 0.50) (0.0, 0.0) 7.559×104

Robust(α = 0.70) (0.0, 0.0) 7.545×104

Table 2: Mean compliance under worst load

Configuration Load point[m] Mean Compliance[J/m3] Increase rate[%]

Deterministic (0.0, 0.40) 8.127×104 6.848
Robust(α = 0.30) (0.0, 0.40) 8.048×104 6.292
Robust(α = 0.50) (0.0, 0.40) 8.016×104 6.049
Robust(α = 0.70) (0.40, 0.0) 7.984×104 5.813

Deterministic (0.40, 0.0) 8.126×104 6.832
Robust(α = 0.30) (0.40, 0.0) 8.047×104 6.284
Robust(α = 0.50) (0.40, 0.0) 8.008×104 5.951
Robust(α = 0.70) (0.0, 0.40) 7.974×104 5.680

The deterministic optimum configuration obtained under the nominal load condition is shown in Fig. 7. The robust
optimum configuration underα = 0.7 in Eq. (15) is shown in Fig. 8. These configurations are very similar with
each other except for the hole shape closed to the vertices. Fig. 8 shows the robust design under the case ofα = 0.7.
The other optimum configurations for the smaller values of the weighting factors are almost the same in Fig. 8.
Table 1 compares the mean compliance values under the deterministic load between the deterministic and the
robust optimum configurations withα = 0.3,0.5 and 0.7. It is found that the mean compliance of the robust
configuration under the deterministic load is smaller than that of the deterministic configuration.
Then, Table 2 compares the mean compliance values under the worst load conditions. The load point shows
the worst load point. The values of the mean compliance under the rotationally symmetric load point are also
listed. The deterioration of the compliance value are almost the same between the deterministic and the robust
configurations, though the deterioration rates of the robust configurations are smaller than that of the deterministic
configuration. It means that the deterministic optimum configuration has higher robustness in this case. That’s
why the optimum configurations are the similar configurations.
It is expected that the research concerning the robust optimum design will expect to obtain the different design
from the deterministic one. However, that is not always true. We must consider the effect of the random parameter
on the deterministic optimum configuration first.
For the purpose, the out-of-plane deformation distributions for the deterministic optimum configuration are com-
pared between the nominal and the worst load conditions in Fig. 9. The maximum displacement occurs at the load
point under the nominal case. On the other hand, the maximum occurs not at the load point under the worst load
case, at the righter position from the worst load point, at the edge of the hole. It is considered that the hole makes
the maximum displacement position shift form the worst load point to the edge of the hole, that will make the
deterioration of the worst compliance smaller. As a result, the deterministic optimum configuration happens to be
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Figure 9: Out-of-plane deformation distribution for deterministic optimum configuration

robust for variations of the load point in this example.

7. Conclusion
This paper investigates the robust topology optimum design for the thin plate structure under the concentrated load
with uncertain load point. The uncertainty is modeled by using the convex hull to find the worst load condition that
yield the worst value of the mean compliance. The robust objective function is formulated as a weighted sum of
the mean and the worst compliance. The optimum configuration is obtained by using the level set-based topology
optimization.
Through the numerical examples, the robust configuration is almost similar to the deterministic configuration. It
means that we must consider the effect of uncertainties of the design parameters on the deterministic optimum
configuration at first.
We will investigate the effect of the other design parameters on the optimum configuration for the thin plate
structure.
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