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Abstract  
A novel mathematical programming approach is proposed in this study to assess the linear buckling load of steel 
structure with uncertain system parameters. The considered uncertainties of system parameters are modelled by 
the interval approach such that only bounds of uncertain parameters are available. This particular uncertainty 
model is applicable for situations where probabilistic approach is inapplicable due to the insufficiency of the data 
of system parameters. By implementing an alternative finite element formulation for the two-dimensional beam 
element, the deterministic second order geometrically nonlinear problem is formulated into a mathematical 
programming problem. Furthermore, by treating all the interval uncertain system parameters as bounded 
mathematical programming variables, the integration of interval uncertainties in the deterministic linear buckling 
analysis becomes possible, such that the lower and upper bounds of the buckling load can be adequately obtained 
by solving two explicit nonlinear programs. The proposed computational scheme offers a single-phase interval 
buckling analysis for steel structures by combining the linear analysis of the structure at its reference configuration 
with the eigenvalue calculation. Such ability can well maintain the physical feasibility of the engineering 
structures for the purpose of uncertainty analysis, so the physically meaningful lower and upper bounds of the 
buckling load can be efficiently obtained. In addition, unlike traditional uncertain buckling analysis, the proposed 
method is able to thoroughly model the dependency between uncertain system parameters (i.e., the physical 
relationship between cross-sectional area and second moment of area of beam element must be compatible when 
cross-sectional area possesses uncertainty). One numerical example is presented to illustrate the accuracy and 
applicability of the proposed approach.  
Keywords: interval analysis, buckling, steel structure, mathematical programming, dependency. 
 
1. Introduction 
Linear buckling analysis provides a computational framework which has been prevalently implemented for 
assessing the safety of engineering structures against large deformation. Due to its extensive applicability, 
computational efficiency and remarkable accuracy, linear buckling analysis has been extensively performed in 
modern engineering applications by integrating such analysis framework into front-edge engineering analysis 
software.  
However, one practical issue often encountered among engineering application is the impact of uncertainties of 
system parameters. The existence of uncertainties of system parameters is inherent, and the impact upon the 
structural response is mercurial yet inevitable [1]. Such implications can influence structural performance [2], and 
consequently structural safety would be compromised if the impacts of uncertainties are not addressed 
appropriately [3]. 
In order to rigorously assess structural safety against large deformation, buckling analyses with considerations of 
uncertainties of system parameters have been proposed. Numbers of research works on the linear buckling analysis 
with stochastic uncertainties have been developed. However, types of uncertainties of system parameters are not 
unique. Such diversity of uncertainty stimulates further development of other forms of non-deterministic linear 
buckling analysis for various engineering situations. 
This paper presents a mathematical programming based uncertain linear buckling analysis for assessing the 
buckling load of engineering frames which involve interval uncertain parameters. The presented method offers the 
worst and best case buckling loads of frames including both uncertain-but-bounded material properties and 
loading conditions in two explicit calculations. Uncertain linear buckling analysis is transformed into an 
eigenvalue problem with interval parameters within finite element (FE) framework. Furthermore, the proposed 
method is able to reformulate the interval eigenvalue problem into two explicit nonlinear mathematical programs 
(NLP), which individually depicts the feasible regions for the worst and best case buckling load. The applicability, 
accuracy, as well as the computational efficiency of the presented approach are illustrated through a practically 
motivated numerical example.  
 
2. Deterministic linear buckling analysis 
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From traditional finite element method (FEM), by assuming constant axial force, the deterministic linear buckling 
analysis can be formulated into an eigenvalue problem as: 

 0zKK GM =+  )λ( b  (1) 

where dd×ℜ∈GM KK ,  denote the conventional material and geometric stiffness matrices at reference 
configuration respectively; d denotes the total degree of freedom of the structure; bλ  denotes the structural 

buckling load which is the minimum positive eigenvalue of Eq.(1); dℜ∈z  is a non-zero vector which denotes the 
eigenvector corresponding to the buckling load or the eigenvalue. Since the eigenvalue analysis defined in Eq.(1) 
is indeterminate, the eigenvector z denotes the shape of the buckling of engineering structure instead of actual 
buckled deformation [4]. 
In this study, an alternative FE formulation of the 2-dimensional beam is adopted. For ith element, the adopted FE 
model is illustrated in Figure 1. 
 

 
 

Figure 1: Generic 2D frame element i with second-order geometric nonlinearity (a) generalized stresses, (b) 
generalized strains 

 
The adopted approach is based on the second-order geometric theory which assumes that displacements from 
undeformed configuration are geometrically small [5]. For a generic 2D frame element, there are four generalized 
stress/strain components involved in the second-order geometrically nonlinear 2D frame element. The axial and 
two end rotational components are adopted from linear analysis such that: 

 3
321 ][ ℜ∈= Tiiii qqqq  (2) 

 3
321 ][ ℜ∈= Tiiii eeee  (3) 

whereas the additional transverse component is employed for the purpose of the second-order geometrically 
nonlinear analysis [5], which takes the form of: 

 ℜ∈= ][ ii qGGq  (4) 

 ℜ∈= ][ ii eGGe  (5) 

where, iq  and i
Gq  denote the generalized stresses which are illustrated in Figure 1(a); ie  and i

Ge  denote the 
generalized strain which are illustrated in Figure 1(b). Therefore, the equilibrium condition of the ith 2D frame 
element for the second-order geometrically nonlinear analysis is: 
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 iiiTiiT FqCqC GG =+0  (7) 

where iL  is the length of the ith element. The elemental compatibility condition is defined as: 
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or 

 iii euC =0  (10) 

 iii
GG euC =  (11) 

and the constitutive condition is defined as: 
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or 

 iiii qeSS G =+ )( 0  (14) 

 iii
GGF qeS =  (15) 

where iii IAE ,,  are the Young’s modulus, cross-sectional area and the second moment of area of the ith element, 
respectively. Eqs.(6)-(15) alternatively formulate the three governing equations for the second-order geometrically 
nonlinear 2D frame element. This unconventional formulation is equivalent to the governing equation formulated 
by the traditional FEM. For example, let 0=θ  and substitute Eqs.(10), (11) (14) and (15) into Eq.(7), thus 

 

iii

iiiiTiiiTiiiiT

iiiiTiiiiiT

iiiTiiiiT

iiTiiTi

     

     

     

     

uKK

uCSCCSCuCSC

uCSCuCSSC

eSCeSSC

qCqCF

GM

GFGG

GFGG

GFGG

GG

)(

)(

)(

)(

00000

000

00

0

+=

++=

++=

++=

+=

 (16) 

where iiiTi
000 CSCKM = , and iiiTiiiTi

GFGGG CSCCSCK += 00 . Eq.(16) coincides with the traditional FE formulation 
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for linear buckling analysis. Therefore, the eigenvalue problem of the linear buckling analysis of 2D frame with n 
elements can be alternatively expressed as: 

 0)(λ)λ( 00cr000cr =++=+ zCSCCSCzCSCzKK GFGGGM
TTT  (17) 

where for a second-order geometrically nonlinear 2D frame, d3n×ℜ∈0C and dn×ℜ∈GC  are the two global 

compatibility matrices, and their transposes are the global equilibrium matrices; 3n3n ×ℜ∈GSS ,0  and nn×ℜ∈FS  
are the global deterministic stiffness matrices calculated at reference configuration for 2D frames. Eq.(17) presents 
the alternative formulation for the deterministic linear buckling analysis which is beneficial for interval linear 
buckling analysis.  
 
3. Solution algorithm of uncertain linear buckling analysis of frame structure 
The uncertain parameters considered in this investigation are including the Young’s modulus, cross-sectional area 
and second moment of inertia of each structural element, as well as the externally applied loadings at reference 
configuration. 
Therefore, by considering uncertainties of parameters, the worst case buckling load can be calculated by solving: 

 bλmin   
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and the best case solution can be determined as: 

 bλmax   
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where  iz detb,  denotes the ith component of the deterministic buckling mode vector, which is the eigenvector 
corresponding to detb,λ . In addition, the constraint )(AI f=  is introduced to model the dependency between the 
cross-sectional area and the second moment of area of the same structural element.   
Eqs.(18) and (19) provide a mathematical programming based approach for calculating the worst and best case 
buckling loads for 2D frames. The proposed method transforms the uncertain linear buckling analysis, which in 
essence is an interval eigenvalue problem, into two explicit NLPs. By adopting the formulation of the generalized 
stress/strain with the unique structural characteristics of the stiffness matrices, the interval parameters are able to 
be extracted out from the stiffness matrices and explicitly modelled as mathematical programming variables. 
Unlike traditional interval analysis, the proposed method involves no interval arithmetic such that the sharpness of 
the worst and best buckling loads are not compromised due to the inveterate issue of dependency associated with 
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interval arithmetic [6]. 
 
4. Numerical example 
In order to illustrate the applicability, accuracy, and efficiency of the presented computational approach, one 
practically motivated frame structure is investigated. The reference configuration of the structure is shown in 
Figure 2. The NLPs involved in both worst case and best case calculations are solved by a commercial NLP solver 
named CONOPT [7], which implemented within a sophisticated modelling environment named the general 
algebraic modelling system or GAMS [8]. 
 

 
 

Figure 2: Ten-storey five-bay frame 
 
The considered uncertain parameters are including the Young’s modulus, cross-sectional area of beam and 
column, second moment of inertia of beam and column, as well as the applied loadings at reference configuration. 
All the information on the uncertain parameters has been presented in Table 1.  
 

Table 1: Interval parameters of ten-storey five-bay frame 
 

Interval Parameters Lower bound Upper bound 
E 
Ac 
Ab 
Fv 
Fh 

176 GPa 224 GPa 
326.8×10-4 m2 361.2×10-4 m2 
56.34×10-4 m2 62.26×10-4 m2 

68kN 
24kN 

92kN 
36kN 

 
For the ten-storey frame shown in Figure 1, 400WC270 has been implemented to model all columns whereas 
beams are modelled by 310UB46.2 [9]. In order to maintain the physical feasibility between the cross-sectional 
area and second moment of inertia for the same element, the following compatibility conditions are introduced as: 

 5
c

2
ccc 1020241.01898.0)( −×−+= AAAI  (20) 

for all the 400WC270 columns, and 

 5
b

2
bbb 1040288.08876.0)( −×−+−= AAAI  (21) 

for all the 310UB46.2 beams. 
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The worst and best structural buckling load calculated by the proposed NLP approach are 81.27λNLPworstb, =  and 

34.53λNLPbestb, =  respectively. Due to the unavailability of analytical solution for complex structure such as the one 
in current example, the Monte-Carlo simulation method with 100,000 simulations has been performed to partially 
verify the accuracy of the proposed method. The results reported by 100,000 simulations are 01.36λmcsworstb, =  for 

the worst case, and 55.40λmcsbestb, =  for the best case. It is obvious that the performance of the Monte-Carlo 
simulation with 100,000 iterations provides enclosed solutions and the computational efficiency consumed is far 
more than the proposed NLP method.  
 
5. Conclusion  
Uncertain linear buckling analysis with interval parameters has been investigated. A mathematical programming 
founded approach is presented to assess the buckling loads of engineering frames against undesirably large 
displacement by calculating the worst and best case buckling loads. 
All interval parameters considered in this study are able to be modelled as mathematical programming variables 
with upper and lower bounds through reformulations of the traditional FE approach. The advantage is that the 
interval dependence associated with interval arithmetic can be completely eliminated, so the sharpness of the 
extremity of the buckling loads can be enhanced.  
For situations, such as eigen-buckling analyses of structures involving repeated eigenvalues, structures with 
closely spaced eigenvalues, as well as defective structural systems etc, have not been investigated in the present 
study.  
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