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1. Abstract  
In this paper, we propose a robust shape optimization method for a shell structure with unknown loadings. The 
concept of the principal compliance minimization for minimizing the maximal compliance is applied to the shape 
optimization design of a shell structure. The principal compliance minimization problem can be transformed to the 
equivalent maximization problem of the fundamental eigenvalue of the stiffness term, and this problem is 
formulated as the distributed-parameter optimization problem based on the variational method. The derived shape 
gradient function is applied to the H1 gradient method for shells to determine the optimal shape variation, or the 
optimal free-form. With this method, the optimal smooth curvature distribution of a shell structure can be 
determined without shape parameterization. The calculated results show the effectiveness of the proposed method 
for robust shape optimization of a shell with unknown loadings. 
2. Keywords: Robust shape optimization, shell structure, loading uncertainties, principal compliance, H1 gradient 
Method,  
 
3. Introduction 
Structural optimization techniques are widely utilized in many structural design fields. In general optimum design 
problems, the boundary condition is treated deterministically, although the condition such as loading condition 
frequently contains uncertainties. A design problem we often encounter loading conditions from all directions 
or multiple loading conditions by sharing of parts in actual design problems, which is one of the design 
problems with unknown or uncertain loadings. As the optimal design is generally vulnerable to the variation 
of loading because the structural performances such as stiffness or strength are strongly influenced by 
loading, the reliability design is often introduced to the formulation of optimal design problems. Safety factor 
or probabilistic approach is a method of reliability design problems. However, too large factor often causes 
excessive performances, redundant structure and weight gain.  

Another approach to avoid the vulnerability of the optimally designed structure to variations of loading has 
been proposed by Cherkaev et al. [1], in which the concept of the principal compliance minimization is 
introduced, which is defined as the minimization of the maximal compliance under the worst possible 
loading. They formulated it as a min-max compliance problem, and showed that the principal compliance 
minimization problem can be transformed to the equivalent maximization problem of the fundamental 
eigenvalue of the stiffness term. They applied this idea to a simple size optimization problem. Takezawa et al. 
[2] applied the concept of the principle compliance to a topology optimization problem under the assumption 
that the loading domain is limited in a small sub-domain of the linear elastic domain to solve the full size 
linear elastic system efficiently. 

In this paper, we newly propose a robust shape optimization method for shell structures by employing this 
concept to the free-form optimization method for shells. This method is a parameter-free shape optimization 
method based on the variational method, which was proposed by one of the authors [3]. In this method, a 
shape optimization problem is formulated in the continuous system, and the optimal smooth curvature 
distribution of a shell structure is determined without any shape parameterization, although almost all shape 
optimization methods need shape parameterization. The principal compliance minimization problem is 
transformed to the equivalent maximization problem of the fundamental eigenvalue of the stiffness term based on 
this concept. The transformed objective functional is maximized under the volume constraint, and the shape 
gradient function is theoretically derived using the material derivative method and the adjoint variable method. 
The derived shape gradient function is applied to the H1 gradient method for shells to determine the optimal shape 
variation, or the optimal free-form. We carried out a numerical example to verify the effectiveness of the proposed 
robust shape optimization method. 
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4. Governing equation for a shell as a set of infinitesimal flat surfaces 

 
(a) Geometry of shell 

 
(b) Local coordinates and DOF of surface. 

 
Fig.1  Shell consisting of infinitesimal flat surfaces. 

 
As shown in Fig.1 and Eq.(1), consider a linear elastic shell having an initial bounded domain 3Ω ⊂ , mid-area A 
with the boundary of A∂  , side surface S and thickness h. It is assumed that a shell structure occupying a bounded 
domain is a set of infinitesimal flat surfaces as shown in Fig.1, and stress and strain of the shell are expressed by 
superposing the membrane and bending components based on the Reissner-Mindlin theory. 
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As shown in Fig.1(b), Eq.(2) and Eq.(3), the displacement vector expressed by the displacements in local 
coordinate 1,2,3{ }i iu ==u  is considered by dividing into the in-plane direction 1,2{ }ua a=  and the out-of-plane 
direction 3u . In this paper, the subscripts of the Greek letters are expressed as 1,2α =  and the tensor subscript 
notation uses Einsteins summation convention and a partial differential notation. 

 1 2 3 0 1 2 3 1 2( , , ) ( , ) ( , )u x x x u x x x x xa a aq= -‐‑   (2) 

 3 1 2 3 1 2( , , ) ( , )u x x x w x x=   (3) 

where 0 0 1,2{ }u a a==u , w  and 1,2{ }a aq ==q  express the in-plane displacements, out-of-plane displacement and 
rotational angles of the mid-area of the shell, respectively. Then, the weak form state equation relative to 

( )0 w Uu= u , ,θ ∈  can be expressed as Eq.(4). An in-plane load 1,2{ }fα α= , an out-of-plane load 3{ }f  are 
considered as the external forces. 

 ( ) ( )( ) ( )( ) ( ) ( )0 0 0 0 0, , , , , , , , , , , , ,a w w l w u w U u w U= ∀ ∈ ∈　 　　u u uθ θ θ θ θ   (4) 

where ( )  expresses a variation. In addition, the bilinear form ( )a ,⋅ ⋅  and the linear form ( )l ⋅  are defined. 

 ( ) ( )( ) ( )( ) ( )( ){ }0 0 0 , 3 , 0 , 3 , , ,, , , , , sa w w C u x u x C w w dαβγδ α β α β γ δ γ δ αβ α α α αθ θ θ θ
Ω

= − − + − − Ω∫u uθ θ   (5) 

 ( )( ) ( ) ( ){ }0 1 01 3 1 2 02 3 2 3, , i il w f u d f u x f u x f w dθ θ
Ω Ω

= Ω = − + − + Ω∫ ∫u θ   (6) 

where{ }C αβγδ β γ δα , , , =1,2 and{ } , 1,2
sC α βαβ = express an elastic tensor with respect to the membrane stress and an 

elastic tensor with respect to the shearing stress, respectively. It will be noted thatU in Eq.(4) is given by the 
following equation.

 ( ) ( ){ }5(1) (1) (1) (1) (1) 1
0,1 0,2 1 2, , , , H ( ) | satisfy the given Dirichlet condition on each sub-boundaryU u u w Aθ θ= ∈   (7) 

where H1 is the Sobolev space of order 1. 
 
5. Robust shape optimization of shell structure 
 
5.1. Domain variation 
We consider that a linear elastic shell structure having an initial domain Ω , mid-area A , boundary A∂  and side 
surface S  undergoes domain variation V  (i.e., design velocity field) in the out-of-plane direction such that its 
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domain, mid-area, boundary and side surface becomeΩs , sA , sA∂  ,and sS  as shown in Fig.2, respectively. It is 
assumed that the thickness h  remains constant under the domain variation. The subscript s  expresses the 
iteration history of the domain variation.  

 
 

Fig.2  Out-of-plane shape variation by V. 
 
5.2. Principal compliance 
In a domain Ω , the principal compliance pl of a structure is defined as the maximal compliance under all 
admissible unknown loadings [1]. 

 { }max( ) maxp i iA
l l f u dA= = ∫   (8) 

where the unknown loadings satisfy following normalizing condition as shown in Eq.(9). 

 11 1
2 ij i jA f f dx−

Ω
=∫   (9) 

where f  is the force vector, and , 1,2,3{ }ij i jA =  is a diagonal tensor which expresses the loading positions and their 
magnitude. The component of ijA  is proportional to the magnitude of the force corresponding, and has an 
infinitesimal δ  at the point without loading. Then, the inverse tensor of ijA  expresses the weight factor to 
describe the set of admissible loadings. The principal compliance minimization problem can be transformed to the 
equivalent maximization problem of the fundamental eigenvalue (1)λ , because the maximal compliance can be 
expressed as the inverse of the fundamental eigenvalue of the stiffness tensor [1]. 

 (1)1pl λ∝   (10) 

 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
0 0 0 0 0 0(( , , ), ( , , ))= (( , , ), ( , , )),    ( , , ) , ( , , )a w w b w w w U w Uλ ∈ ∀ ∈u u u u u uθ θ θ θ θ θ   (11) 

where the bilinear form ( , )b ⋅ ⋅ is defined as 

 ( )( ){ }0 0 3 0 3 33(( , , )) ij i jb w A u u dx A u x u x A ww dxαβ α α β βθ θ
Ω Ω

= = − − +∫ ∫u θ   (12) 

 
5.3. Problem formulation 
Let us consider a free-form optimization problem for minimizing the principal compliance of a shell structure. 
Letting the state equations in Eq.(11) and the volume be the constraint conditions, and the fundamental eigenvalue 
be the objective functional to be minimized, a distributed parameter shape optimization problem for determining 
the optimal design velocity field V  can be formulated based on the variational method as 

 Given  ˆ, A M   (13) 
 Find  V   (14) 
 that minimize　  (1)λ−   (15) 
 subject to  Eq.(11) and ˆ(= )

A
M hdA M≤∫   (16) 

where M  and M̂  denote the volume and its constraint value, respectively.  
 



 
 

4 

5.4. Derivation of shape gradient function and optimality conditions 
The Lagrange multiplier method is used to transform this constrained shape optimization problem to the 
unconstrained one. Letting 0( , , )wu θ  and Λ  denote the Lagrange multipliers for the state equation and volume 
constraints, respectively, the Lagrange functional L  associated with this problem can be expressed as 

 
(1) (1) (1) (1) (1) (1) (1) (1)
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The material derivative of the Lagrange functional L  can be derived as shown in Eq.(18) using the design velocity 
field V . 
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where (= )Gn G  expresses the shape gradient function. CΘ  is the suitably smooth function space that satisfies the 
constraints of the domain variation. H  is twice the mean curvature of mid-area A . The notations andtop btmn   n  
denote unit outward normal vectors at the top surface and the bottom surface, respectively, and a unit normal 
vector at the mid-area ( )mid top btm≡ −n n = n = n is assumed by Shimoda et al. [3]. The coefficient function of the 
shape gradient function G  consist of (1)G  and MG  corresponding to 1st eigenvalue and volume constraint, 
respectively. The optimality conditions of the Lagrange functional L with respect to 0( , , )wu θ , 0( , , )wu θ  and Λ  
are expressed as 
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When the optimality conditions are satisfied, L  becomes 

 L G= n,V
 

 (24) 

Considering the self-adjoint relationship (1) (1) (1)
0 0( , , )=( , , )w wu uθ θ , which is obtained from comparing Eq.(20) and 

Eq.(21), the shape gradient functions (1) , MG G   are derived as  
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6. H1 Gradient method for shells 
The free-form optimization method for shell was proposed by Shimoda [3], which consists of main three 
processes; (1) Derivation of shape gradient function (2) Numerical calculation of shape gradient function (3) The 
H1 gradient method for determining the optimal shape variation. The H1 gradient method is a gradient method in a 
Hilbert space. The original H1 gradient method was proposed by Azegami in 1994 [4] and also called the traction 
method. Shimoda modified the original method for free-form shell optimization. In the present paper, we employ 
the H1 gradient method for shells to determine the optimal shape variation for the robust shape optimization 
problem. It is a node-based shape optimization method that can treat all nodes as design variables and does not 
require any design variable parameterization. 

 
 

Fig.3  H1 gradient method for shells. 
 
This minimax problem may encounter the repeated eigenvalue problem of the objective functional. When this 
problem occurs, we change the objective and constraint functions as shown in Eq.(27). ( 2)r ≥  denotes the number 
of repeating. The repeated eigenvalue is judged by introducing the range δ . In this paper we use 
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In an analogous way, the shape gradient function becomes 
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5. Results of numerical calculation 
The proposing method is applied to a simple problem to confirm the validity of the proposed method. Fig.4 shows 
the shape optimization problem definition of a box-shaped cantilever shell structure. As shown in Fig.4(b), an 
unknown loading is applied to the center of the free end face. The volume constraint is set as the same as the 
initial value. 

 
(a) Velocity analysis. 

 
(b) Stiffness analysis. 

 
(c) Evaluation of compliance 

calculation. 
 

Fig.4  Boundary conditions. 



 
 

6 

Fig.5(a) shows the obtained optimal shape. The clamped end expands while the area of free end narrows toward 
the loading point. The iteration convergence histories of the 1st and 2nd eigenvalues are shown in Fig.5(b). To 
confirm the robustness of the result, we use the polar coordinate in which the origin is the point of the loading, and 
measure the compliance of every 30 degree in the circumferential direction. The convergence history of the 
principal and the evaluation compliance of every 30 degree in the circumferential direction is shown in Fig.5(c), 
and comparison of compliances of each loading direction is shown in Fig.5(d). It is confirmed that the 1st 
eigenvalue is maximized as shown in Fig.5(b). The compliance is reduced by approximately 76% as shown in 
Fig.5(c)(d). We confirm that the optimal robust shape with high stiffness and independence of loading direction 
can be obtained with this method. 

 
(a) Obtained shape  

(b)Iteration histories of ratios of eigenvalue. 

 
(c) Convergence history of principal and evaluation 

compliance. 

 
(d) Comparison of compliances for loading directions. 

 
Fig.5  Results of robust shape optimization. 

 
5. Conclusions 
In this paper, a robust shape optimization method for a shell structure with unknown loadings was constructed 
based on the concept of the principal compliance minimization which was transformed to the equivalent 
maximization problem of the fundamental eigenvalue of the stiffness term. A principal compliance maximization 
problem subject to both constraints of the volume and the state equation of shell structure was formulated as a 
distributed-parameter shape optimization problem, and the sensitivity function for this problem was theoretically 
derived. The derived shape gradient function was applied to the H1 gradient method for shell structures to 
determine the robust optimal shape. The calculated result showed the effectiveness of the proposed method for 
robust shape optimization of a shell structure with unknown loading, or for creating the smooth optimal shell 
structure with high stiffness and independence of loading directions.  
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