Dot product: The dot product of two vectors yields a scalar:     

A . B = C

Magnitude:

image004.gif (274 bytes)

 

Cross product:

The cross product of two vectors yields a vector:  

image006.gif (249 bytes)

Magnitude:

image008.gif (274 bytes)

Direction:Vector C has a direction perpendicular to the plane containing A and B such that C is specified by the right hand rule.

image010.gif (7928 bytes)
Laws of operation:

The Commutative Law is not valid:

image012.gif (283 bytes)

image014.gif (286 bytes)

Multiplication by a scalar:

image016.gif (602 bytes)

The Distributive Law:

image018.gif (500 bytes)

image020.gif (7742 bytes)
 

Cross products of unit vectors:

The direction is determined using the right hand rule.  As shown in the diagram, for this case the direction is k and the Magnitude is:

| i j |=(1)(1)(sin90�) = (1)(1)(1)=1

 

so:

 i j = (1) k = k

 and:

i j = k           i k = -j          i i = 0

j k = i           j i = -k          j j = 0

k i = j           k j = -i          k k = 0

 

 

image024.gif (8195 bytes)

image022.gif (1463 bytes)

alphabetical order +

Cross product of two vectors in terms of their components:

A = Axi + Ayj +Azk

B = Bxi + Byj + Bzk

A B = (Axi + Ayj +Azk) (Bxi + Byj + Bzk)

                        = AxBx (i i) + AxBy (i j) + AxBz (i k)

                        + AyBx (j i) + AyBy (j j) + AyBz (j k)

                        + AzBx (k i) + AzBy (k j) + AzBz (k k)

                       

                        = 0 + AxBy k – AxBz j - AyBx k + 0 + AyBz i + AzBx j – AzBy i + 0

Hence:

A B = (AyBz – AzBy ) i -  (AxBz -AzBx) j + (AxBy - AyBx ) k    

This equation may also be written in a compact determinant form:

image026.gif (659 bytes)

For element i:  (i)(AyBz – AzBy ) image028.gif (886 bytes)
For element j:  (-j)(AxBz -AzBx)

(notice the negative sign here)

image030.gif (924 bytes)
For element k: (k)(AxBy - AyBx ) image032.gif (932 bytes)

Hence:

A B = (AyBz – AzBy ) i -  (AxBz -AzBx) j + (AxBy - AyBx ) k

image034.gif (4759 bytes)

In summary, The cross product of vectors a and b is a vector perpendicular to both a and b and has a magnitude equal to area of the parallelogram generated from a and b. The direction of the cross product is given by the right hand rule (fingers from vector a to vector b and thumb is along vector c). Order is important in the cross product:

image036.gif (2981 bytes)

 

 

Triple product:

image038.gif (1902 bytes)

image039.gif (3398 bytes)

image041.gif (638 bytes)

 

WB01719_.gif (892 bytes) Back to Vectors           WB01717_.gif (893 bytes) Next to Integral / Differentiation

 

  

 

�This site is copyrighted by Simin Nasseri and the School of AMME, the University of Sydney (2002). All rights reserved.

sulogo.jpg (8055 bytes) ammelogo.jpg (6442 bytes)
Sydney University School of AMME